Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:02:14.387Z Has data issue: false hasContentIssue false

Interactions of Point Defects and Impurities With Open Volume Defects in Silicon

Published online by Cambridge University Press:  17 March 2011

J.S. Williams
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
M.C. Ridgway
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
M.J. Conway
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
J. Wong-Leung
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
B.C. Williams
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
M. Petravic
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
F. Fortuna
Affiliation:
Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3, Batiment 108-F- 91405 Orsay, France
M.-O. Ruault
Affiliation:
Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3, Batiment 108-F- 91405 Orsay, France
H. Bernas
Affiliation:
Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3, Batiment 108-F- 91405 Orsay, France
Get access

Abstract

Ion implantation can produce open volume defects in silicon by one of two methods, either by H or He implantation followed by annealing to create a band of nanocavities and also by direct implantation to reasonably high doses, which results in a vacancy excess region at depths less than about half the projected ion range. This paper reviews three interesting aspects of open volume defects. In the first case, the very efficient gettering of fast diffusing metals to nanocavities formed by H-implantation is illustrated. In addition, the non-equilibrium behaviour of Cu3Si precipitation and dissolution at cavities is examined. The second example treats the interaction of irradiation-induced defects with nanocavities, particularly preferential amorphisation at open volume defects and subsequent cavity shrinkage. The final example illustrates the coalescence of excess vacancies into small voids on annealing and the use of gettering of Au to detect such open volume defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Myers, S.M., Follstaedt, D.M. and Bishop, D.M., Mat. Sci. Forum 143–147, 1635 (1994).Google Scholar
2. Follstaedt, D.M., Appl. Phys. Lett. 62, 1116 (1993).Google Scholar
3. Wong-Leung, J., Ascheron, C.E., Petravic, M., Elliman, R.G. and Williams, J.S., Appl. Phys. Lett. 66, 1231 (1995).Google Scholar
4. Wong-Leung, J., Nygren, E. and Williams, J.S., Appl. Phys. Lett. 68, 416 (1995)Google Scholar
5. Myers, S.M. and Petersen, G.A., Phys. Rev. B 57, 7015 (1998).Google Scholar
6. Wong-Leung, J., Williams, J.S., Kinomura, A., Nakano, Y., Hayashi, Y. and Eaglesham, D.J., Phys. Rev. B 59, 7990 (1999).Google Scholar
7. Follstaedt, D. M., Myers, S. M., Petersen, G.A. and Medernach, J.W., J. Electron Mat. 25, 151 (1996).Google Scholar
8. Raineri, V., Coffa, S., Szilagyi, E., Gyulai, J. and Rimini, E., Phys. Rev. B 61, 937 (2000).Google Scholar
9. Wong-Leung, J., PhD Thesis, The Australian National University (1997).Google Scholar
10. Mohadjeri, B., Williams, J.S. and Wong-Leung, J., Appl. Phys. Lett. 66, 1889 (1995).Google Scholar
11. Kinomura, A., Williams, J.S., Wong-Leung, J. and Petravic, M., Nucl. Instrum. Meth. B 127/128, 297 (1997).Google Scholar
12. Kinomura, A., Williams, J.S., Wong-Leung, J., Petravic, M., Nakano, Y. and Hayashi, Y., Appl. Phys. Lett. 73, 2639 (1998).Google Scholar
13. Raineri, V. and Campisano, U., Nucl. Instrum. Meth. B 120, 56 (1996).Google Scholar
14. Williams, J.S., Zhu, X.F., Ridgway, M.C., Conway, M.J., Williams, B.C., Fortuna, F., Ruault, M.-O. and Bernas, H., Appl. Phys. Lett. 77, 4280 (2000).Google Scholar
15. Zhu, X.F., Williams, J.S., Llewellyn, D.J. and McCallum, J.C., Appl. Phys. Lett. 74, 2313 (1999).Google Scholar
16. Ridgway, M.C., Zhu, X.F., Williams, J.S., Fortuna, F., Ruault, M.-O., and Bernas, H., Phys. Rev. Lett. (submitted).Google Scholar
17. Zhou, D.S., Holland, O.W. and Budai, J.D., Appl.. Phys. Lett. 63, 3580 (1993).Google Scholar
18. Ellingboe, S.L. and Ridgway, M.C., Nucl. Instrum. Meth. B127, 90 (1997).Google Scholar
19. Holland, W.O., Xie, L., Nielson, C. and Zhou, D.S., J. Elect. Mat. 25, 99 (1996).Google Scholar
20. Williams, J.S., Conway, M.J., Williams, B.C. and Wong-Leung, J., Appl. Phys. Lett. ( in press).Google Scholar
21. Mazzone, A.M., Phys. Stat. Sol. A95, 149 (1986).Google Scholar
22. Benton, J.L., Libertino, S., Kringhøj, P., Eaglesham, D.J., Poate, J.M. and Coffa, S., J. Appl. Phys. 82, 120 (1997).Google Scholar
23. Brown, R.A., Kononchuk, O., Rozgonyi, G.A., Koveshnikov, S., Knights, A.P., Simpson, P. and Gonzales, F., J. Appl. Phys. 84, 2459 (1998).Google Scholar
24. Venezia, V.C., Eaglesham, D.J., Haynes, T.E., Agarwal, A., Jacobson, D.C., Gossmann, H.-J. and Baumann, F.H., Appl. Phys. Lett. 73, 2980 (1999).Google Scholar
25. Williams, J.S., Conway, M.J., Wong-Leung, J., Deenapanray, P.N.K., Petravic, M., Brown, R.A., Jacobson, D.C. and Eaglesham, D.J., Appl. Phys. Lett. 75, 2424 (1999).Google Scholar
26. Custer, J.S., Thompson, M.O., Jacobson, D.C., Poate, J.M., Roorda, S., Sinke, W.C. and Spaepen, F., Mat. Res. Soc. Symp. Proc. 157, 689 (1990).Google Scholar
27. Volkert, C.A., J. Appl. Phys. 70, 3521 (1991).Google Scholar
28. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, New York (1985).Google Scholar