Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T17:26:16.034Z Has data issue: false hasContentIssue false

Interactions between Edge Dislocations and Interstitial Clusters in Iron and Copper

Published online by Cambridge University Press:  21 March 2011

Yu.N. Osetsky
Affiliation:
Materials Science and Engineering, Department of Engineering, The University of Liverpool, Liverpool L69 3GH, UK
D.J. Bacon
Affiliation:
Materials Science and Engineering, Department of Engineering, The University of Liverpool, Liverpool L69 3GH, UK
A. Serra
Affiliation:
Dept. Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Jordi Girona 1-3, E-08034 Barcelona, Spain
B.N. Singh
Affiliation:
Materials Research Department, Risø National Laboratory, P.O.Box 49, DK-4000 Roskilde, Denmark
Get access

Abstract

Dislocations decorated by both clusters of self-interstitial atoms (SIAs) and small dislocation loops, are one of the microstructure features which can play an important role in post-irradiated deformation processes. The interactions between dislocations and clusters are important and are usually treated within the framework of isotropic elasticity theory. However, it is still not clear whether or not these interactions, especially for small clusters at short distances, can be treated accurately by elasticity theory. Comparative studies by atomistic simulation and elasticity theory can clarify this. Here we present a simple example of such a study where interactions between a glissile SIA cluster and an edge dislocation are studied in bcc-Fe and fcc-Cu using both techniques. In Fe we have studied the interaction of a dislocation with Burgers vector b= 1/2<111> lying along <112> direction with a SIA cluster with the same b situated at different distances below the extra half-plane. In Cu, the dislocation and cluster had b = 1/2<110> and the dislocation line was along the <112> direction. Interactions with clusters of diameter about 1nm were simulated. Elastic calculations were made within the isotropic theory with parameters estimated from atomistic simulation. The results obtained by both techniques are discussed and some preliminary conclusions for different cases are drawn.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bacon, D.J. and Rubia, T.Diaz de la, J. Nucl. Mater., 216 (1994) 275; D.J.Bacon, A.F.Calder and F.Gao, J.Nucl.Mater., 251 (1997) 1; D.J. Bacon, F. Gao and Yu.N. Osetsky, Nucl. Instr. And Methods. In Phys. Research, B 153 (1999) 87; D.J. Bacon, F. Gao and Yu.N. Osetsky, J.Nucl. Mater, 276 (2000) 1.Google Scholar
[2] Woo, C.H. and Singh, B.N., Philos. Mag.A, 65 (1992) 889; B.N.Singh and A.J.E.Foreman, Ibid, 66 (1992) 975; B.N.Singh, S.I.Golubov, H.Trinkaus, A.Serra, Yu.N.Osetsky and A.V.Barashev, J.Nucl.Mater. 251 (1997) 107; S.I.Golubov, B.N.Singh and H.Trinkaus, J.Nucl.Mater. 276 (2000) 78.Google Scholar
[3] Stiegler, J.O. and Bloom, E.E.. Rad. Effects, 8 (1971) 33.Google Scholar
[4] Bullough, R., In: Dislocations and Properties of Real Materials, The Institute of Metals, London (1985) 283.Google Scholar
[5] Singh, B.N., Horsewell, A., Toft, P. and Edwards, D.J., J.Nucl.Mater. 224 (1995) 131.Google Scholar
[6] Kiritani, M., J.Nucl.Mater., 216 (1994) 220.Google Scholar
[7] Singh, B.N., Foreman, A.J.E. and Trinkaus, H., J.Nucl.Mater., 249 (1997) 103.Google Scholar
[8] Trinkaus, H., Singh, B.N. and Foreman, A.J.E., J.Nucl.Mater., 249 (1997) 91; H.Trinkaus, B.N.Singh and A.J.E.Foreman, J.Nucl.Mater., 251 (1997) 172.Google Scholar
[9] Ghoniem, N.M., Singh, B.N., Sun, L.Z. and Rubia, T. Diaz de la, J.Nucl.Mater., 276 (2000) 166; N.M.Ghoniem and B.N.Singh, Proc. Of 20th Risø Int. Symp. on Materials Science : Deformation-Induced Microstructures : Analysis and Relation to Properties, Eds: J.B.BildeSørensen et al., Risø National Laboratory, Roskilde, Denmark, (1999) 41.Google Scholar
[10] Wirth, B.D., Odette, G.R., Maroudas, D. and Lucas, G.E., J.Nucl.Mater., 244 (1997) 185; Yu.N.Osetsky, M.Victoria, A.Serra, S.I.Golubov and V.Priego, J.Nucl.Mater., 251 (1997) 34; Yu.N.Osetsky, A.Serra and V.Priego, Mat. Res. Soc. Symp. Proc., 527, 59 (1998); Yu.N.Osetsky, D.J.Bacon and A.Serra, Philos.Mag.Lett.79 (1999) 273; Yu.N. Osetsky, D.J.Bacon and A.Serra, Mat. Res. Soc. Symp. Proc., vol. 538 (1999) 649; Yu.N. Osetsky, F.Gao and D.J.Bacon, Ibid., vol. 540 (1999) 691; Yu.N.Osetsky, D.J.Bacon, A.Serra, B.N.Singh and S.I.Golubov, J.Nucl.Mater., 276 (2000) 65; A.V.Barashev, Yu.N.Osetsky and D.J.Bacon, Philos.Mag., A 80 (2000) 2709.Google Scholar
[11] Rodney, D. and Martin, G., Phys.Rev.Lett.,82 (1999) 3272; Phys.Rev., B 61 (2000) 8714.Google Scholar
[12] Osetsky, Yu.N., Bacon, D.J., Gao, F., Serra, A. and Singh, B.N., J.Nucl.Mater., 283–287 (2000) 784.Google Scholar
[13] Ackland, G.J., Tichy, G., Vitek, V., Finnis, M.W., Philos. Mag., A, 56 (1987) 735; G.J.Ackland, D.J.Bacon, A.F.Calder and T.Harry, Philos. Mag., A, 75, (1997) 713Google Scholar
[14] Foreman, A.J.E., AERE Report - R 4654 (1964).Google Scholar
[15] Hirsch, J.P. and Lothe, J., Theory of dislocations, Wiley (1982).Google Scholar
[16] Hull, D. and Bacon, D.J., Introduction to Dislocations, Butterworth-Heinemann, Oxford (1984)Google Scholar
[17] Bacon, D.J., Barnett, D.M. and Scattergood, R.O., Progress in Mat. Science, 23 (1979) 51.Google Scholar
[18] Schiffgens, J.O. and Garrison, K.E., J.Appl.Phys., 43 (1972) 3240.Google Scholar
[19] Osetsky, Yu.N., Serra, A., Singh, B.N., Golubov, S.I., Philos. Mag., A 80 (2000) 2131 Google Scholar