Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:30:47.045Z Has data issue: false hasContentIssue false

Interaction volume of electron beam in carbon nanomaterials: A molecular dynamics study

Published online by Cambridge University Press:  07 July 2014

Masaaki Yasuda
Affiliation:
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Shinya Wakuda
Affiliation:
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Yoshiki Asayama
Affiliation:
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Hiroaki Kawata
Affiliation:
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Yoshihiko Hirai
Affiliation:
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Get access

Abstract

A molecular dynamics (MD) simulation was performed to study the interaction volume of electron beam in carbon nanomaterials. The interaction between incident electron and carbon atom in the target materials during electron irradiation is introduced by the relativistic binary collision theory. The motion of each atom in the material under electron irradiation is calculated with the MD simulation. The primary energy dependence of the interaction volume in the carbon nanotube and the multi-layered graphene are studied. The secondary damages caused by the knock-on atoms are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Krasheninnikov, A. V. and Banhart, F., Nat. Mater. 6, 723 (2007).CrossRefGoogle Scholar
Krasheninnikov, A. V. and Nordlund, K., J. Appl. Phys. 107, 071301 (2010).CrossRefGoogle Scholar
Gerasimov, G., Radiation Synthesis of Materials and Compounds (CRC Press, 2013), Chapters 18 and 21.Google Scholar
Banhart, F., Li, J., and Terrones, M., Small 1, 953 (2005).CrossRefGoogle Scholar
Li, J. and Banhart, F., Nano Lett. 4, 1143 (2004).CrossRefGoogle Scholar
Terrones, M., Banhart, F., Grobert, N., Charlier, J.-C., Terrones, H., and Ajayan, P. M., Phys. Rev. Lett. 89, 075505 (2002).CrossRefGoogle Scholar
Song, B., Schneider, G. F., Xu, Q., Pandraud, G., Dekker, C. and Zandbergen, H., Nano Lett. 11, 2247 (2011).CrossRefGoogle Scholar
Luzzi, D. E. and Smith, B. W., Carbon 38, 1751 (2000).CrossRefGoogle Scholar
Ajayan, P. M., Ravikumar, V., and Charlier, J.-C., Phys. Rev. Lett. 81, 1437 (1998).CrossRefGoogle Scholar
Pregler, S. K. and Sinnott, S. B., Phys. Rev. B 73, 224106 (2006).CrossRefGoogle Scholar
Jang, I., Sinnott, S. B., Danailov, D., and Keblinski, P., Nano Lett. 4, 109 (2004).CrossRefGoogle Scholar
Zobelli, A., Gloter, A., Ewels, C. P., Seifert, G., and Colliex, C., Phys. Rev. B 75, 245402 (2007).CrossRefGoogle Scholar
Krasheninnikov, A. V., Banhart, F., Li, J. X., Foster, A. S., and Nieminen, R. M., Phys. Rev. B 72, 125428 (2005).CrossRefGoogle Scholar
Yasuda, M., Kimoto, Y., Tada, K., Mori, H., Akita, S., Nakayama, Y., and Hirai, Y., Phys. Rev. B 75, 205406 (2007).CrossRefGoogle Scholar
Yasuda, M., Mimura, R., Kawata, H., and Hirai, Y., J. Appl. Phys. 109, 054304 (2011).CrossRefGoogle Scholar
Asayama, Y., Yasuda, M., Tada, K., Kawata, H., and Hirai, Y., J. Vac. Sci. Technol. B 30, 06FJ02 (2012).CrossRefGoogle Scholar
Tada, K., Yasuda, M., Mitsueda, T., Honda, R., Kawata, H., and Hirai, Y., Microelectron. Eng. 107, 50 (2013).CrossRefGoogle Scholar
Yasuda, M., Chihara, Y., Tada, K., Kawata, H., and Hirai, Y., J. Vac. Sci. Technol. B 31, 06FF06 (2013).CrossRefGoogle Scholar
Mott, N. F., Proc. R. Soc. (London) A 124, 425 (1929).CrossRefGoogle Scholar
Tersoff, J., Phys. Rev. B 37, 6991 (1988).CrossRefGoogle Scholar
Tersoff, J., Phys. Rev. B 39, 5566 (1989).CrossRefGoogle Scholar
Brenner, D. W., Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
Brenner, D. W., Robertson, D. H., Elert, M. L., and White, C. T., Phys. Rev. Lett. 70, 2174 (1993).CrossRefGoogle Scholar