Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T03:26:41.887Z Has data issue: false hasContentIssue false

Interaction of Thin Ga Overlayer with InP(110): a Photoemission Study

Published online by Cambridge University Press:  21 February 2011

R. Cao
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
K. Miyano
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
T. Kendelewicz
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
I. Lindau
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
W. E. Spicer
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
Get access

Abstract

Photoemission study of the Ga/InP(110) interface, in particular at the In 4d cooper minimum (CM) reveals that the growth of the deposited Ga on InP(110) at room temperature (RT) has two modes: chemisorption at low coverage and metallic island formation at high coverage, whereas the Ga overlayer is much more uniform at 80K low temperature (LT). A replacement reaction between Ga and InP is found to take place only underneath the Ga islands. Metal screening from the Ga islands is suggested to weaken the substrate bonds and enhance the replacement reaction. Distinct behavior of Fermi level pinning has been observed at different temperatures. This is correlated with the temperature dependence of the overlayer morphology as well as the interfacial reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kendelewicz, T., Williams, M. D., Petro, W. G., Lindau, I., and Spicer, W. E., Phys. Rev. B 31, 6503 (1985).CrossRefGoogle Scholar
2. Williams, R. H., McKinley, A., Hughes, G. J., and Humphreys, T. P., J. Vac. Sci. Technol. B 2, 56 (1984).Google Scholar
3. Daniels, R. R., Katnani, A. D., Zhao, T. -X., Margaritondo, G., and Zunger, A., Phys. Rev. Lett. 42, 895 (1982).CrossRefGoogle Scholar
4. Zunger, A., Phys. Rev. B 24, 4372 (1981).CrossRefGoogle Scholar
5. Kahn, A., Bonapace, C. R., Duke, C. B., and Paton, A., J. Vac. Sci. Technol. B 1, 613 (1983).CrossRefGoogle Scholar
6. Yeh, J. J. and Lindau, I., Atomic Data and Nuclear Data Table 32, 1 (1985) and references therein.CrossRefGoogle Scholar
7. Cao, R., Miyano, K., Kendelewicz, T., Chin, K. K., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. B 5, 998 (1987).CrossRefGoogle Scholar
8. Stiles, K., Kahn, A., Kilday, D., and Margaritondo, G., J. Vac. Sci. Technol. B 5, 987 (1987).CrossRefGoogle Scholar
9. Cao, R., Miyano, K., Kendelewicz, T., Lindau, I., and Spicer, W. E., Appl. Phys. Lett. 53, 210 (1988).CrossRefGoogle Scholar
10. Cao, R., Miyano, K., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. A (to be published).Google Scholar
11. Spicer, W. E., Lindau, I., Skeath, P., Su, C. Y., and Chye, P., Phys. Rev. Lett. 44, 420 (1980).CrossRefGoogle Scholar
12. Tersoff, J., Phys. Rev. Lett. 52, 465 (1984).CrossRefGoogle Scholar
13. Daniels, R. R., Zhao, T. -X., and Margaritondo, G., J. Vac. Sci. Technol. A 2, 831 (1984).CrossRefGoogle Scholar
14. Cao, R., Miyano, K., Chin, K. K., Lindau, I., and Spicer, W. E., SPIE proceeding 946, 219 (1988).CrossRefGoogle Scholar
15. Kendelewicz, T., Newman, N., List, R. S., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. B 3 1206 (1985).CrossRefGoogle Scholar
16. Newman, N., Spicer, W. E., Kendelewicz, T., and Lindau, I., J. Vac. Sci. Technol. B 4. 931 (1986).CrossRefGoogle Scholar
17. Hiraki, A., Surf. Sci. Rep. 3, 357 (1984) and references therein.CrossRefGoogle Scholar
18. Tersoff, J., Phys. Rev. B 30, 4874 (1984).CrossRefGoogle Scholar