Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:40:32.716Z Has data issue: false hasContentIssue false

Interaction of Hydrogen and Oxygen with Nanocrystalline Diamond Surfaces

Published online by Cambridge University Press:  31 January 2011

Thomas Haensel
Affiliation:
[email protected], Technische Universität Ilmenau, Institut für Physik and Institut für Mikro- und Nanotechnologien, Ilmenau, Germany
Syed Imad-Uddin Ahmed
Affiliation:
[email protected], Technische Universität Ilmenau, Institut für Physik and Institut für Mikro- und Nanotechnologien, Ilmenau, Germany
Jens Uhlig
Affiliation:
[email protected], Technische Universität Ilmenau, Institut für Physik and Institut für Mikro- und Nanotechnologien, Ilmenau, Germany
Roland Koch
Affiliation:
[email protected], Technische Universität Ilmenau, Institut für Physik and Institut für Mikro- und Nanotechnologien, Ilmenau, Germany
José A. Garrido
Affiliation:
[email protected], Technical University Munich, Walter Schottky Institute, Garching, Germany
Martin Stutzmann
Affiliation:
[email protected], Technical University Munich, Walter Schottky Institute, Garching, Germany
Juergen A. Schaefer
Affiliation:
[email protected], Technische Universität Ilmenau, Institut für Physik and Institut für Mikro- und Nanotechnologien, Ilmenau, Germany
Get access

Abstract

Nanocrystalline diamond films (NCD) are strong candidates for applications in a wide variety of fields. An important concern in all these applications is to understand the properties of variously prepared NCD surfaces. This contribution is focussed on the surface science study of hydrogen and oxygen containing NCD films using X-ray photoelectron spectroscopy (XPS) as well as high resolution electron energy loss spectroscopy (HREELS). Previous studies have demonstrated that hydrogen, oxygen, and gases from the ambient environment as well as water can result in drastic surface changes affecting conductivity, wettability, tribological properties, etc. In this contribution we analyzed differently prepared NCD surfaces as a function of parameters such as the annealing temperature under ultrahigh vacuum conditions (UHV). We are able to identify the thermal stability of a number of species at the interface, which are related to different characteristics of C-H, C-OH, C=O, and C=C bonds. Furthermore, a formation of graphitic-like species appears at higher annealing temperatures. An atomic hydrogen treatment was also applied to the NCD surface to obtain further information about the surface composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Robertson, J., Phys. Stat. Sol. A 205, 2233 (2008)Google Scholar
[2] Gruen, D. M., Annu. Rev. Mater. Sci. 29, 211 (1999)Google Scholar
[3] Torrengo, S., Minati, L., Filippi, M., Miotello, A., Ferrari, M., Chiasera, A., Vittone, E., Pasquarelli, A., Dipalo, M., Kohn, E., Speranza, G., Diamond Relat. Mater. 18, 804 (2009)Google Scholar
[4] Stutzmann, M., Garrido, J. A., Eickhoff, M., Brandt, M. S., Phys. Stat. Sol. A 203, 3424 (2006)Google Scholar
[5] Achatz, P., Garrido, J. A., Stutzmann, M., Williams, O. A., Gruen, D. M., Kromka, A., and Steinmüller, D., Appl. Phys. Lett. 88, 101908 (2006)Google Scholar
[6] Michaelson, S., Ternyak, O., Akhvlediani, R., and Hoffman, A., Chem. Vap. Deposition 14, 196 (2008)Google Scholar
[7] Haensel, T., Uhlig, J., Koch, R. J., Ahmed, S. I.-U., Garrido, J. A., Steinmüller-Nethl, D., Stutzmann, M., Schaefer, J. A., Phys. Stat. Sol. A 206, 2022 (2009)Google Scholar
[8] Ibach, H. and Mills, D. L., Electron Energy Loss Spectroscopy and Surface Vibrations, Academic Press, New York, 1982 Google Scholar
[9] Balster, T., Polyakov, V.M., Ibach, H., and Schaefer, J.A., Surface Science 416, 177 (1998)Google Scholar
[10] Yeh, J. J., Lindau, I., At. Data Nucl. Data Tables 32, 1 (1985)Google Scholar