Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:53:31.107Z Has data issue: false hasContentIssue false

The Interaction of Carbon with the Diamond Surface: A Photoelectron Spectroscopy Study

Published online by Cambridge University Press:  10 February 2011

P. Reinke
Affiliation:
Universität Basel, Institut für Physik, Klingelbergstr. 82, 4056 Basel, Switzerland, [email protected]
T. Wrase
Affiliation:
Universität Basel, Institut für Physik, Klingelbergstr. 82, 4056 Basel, Switzerland, [email protected]
K. Müller
Affiliation:
Universität Basel, Institut für Physik, Klingelbergstr. 82, 4056 Basel, Switzerland, [email protected]
P. Oelhafen
Affiliation:
Universität Basel, Institut für Physik, Klingelbergstr. 82, 4056 Basel, Switzerland, [email protected]
R. Locher
Affiliation:
Fraunhofer Institut für Angewandte Festkörperphysik, Tullastr.72, 79108 Freiburg, Germany
Get access

Abstract

The modification of the diamond surface through adsorbants offers the opportunity to adjust the electronic and electron emission properties of the surface. In the study presented here, we deposited between 0.1 and 100 monolayers of carbon from an electron beam evaporation source on polycrystalline diamond films. Photoelectron spectroscopy in the ultraviolet and X-ray regime was employed to characterize the surface. Observations on a (100) polycrystalline diamond film show, that the surface is first depleted of hydrogen and subsequent growth of an amorphous carbon film (a-C) occurs on the reconstructed surface. The deposition of these ultrathin carbon films allows the controlled introduction of sp2carbon and p-π states onto the diamond surface. The field emission current increases considerably with the amount of sp2-carbon accumulated at the diamond surface. The current-voltage characteristics only partially follow the Fowler-Nordheim equation, and the results obtained for different films are described and possible emission mechanism discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Geis, M. W., Twitchell, J. C., Macaulay, J., and Okano, K., Appl. Phys. Lett. 67, 1328 (1995).Google Scholar
2 Diederich, L., Kiittel, O., Schaller, E., and Schlapbach, L., Surf. Sci. 349, 176 (1996).Google Scholar
3 Himpsel, F. J., Veen, J. F. v. d., and Eastman, D. E., Phys. Rev. B 22, 1967 (1971).Google Scholar
4 Robertson, J., Thin Solid films 296, 61 (1997).Google Scholar
5 Ristein, J. and Graupner, R., Advances in Solid State Physics 36, 77 (1996).Google Scholar
6 Gröning, O., Küttel, O. M., Gröning, P., and Schlapbach, L., Appl. Surf. Sci 111, 135 (1997).Google Scholar
7 Veerasamay, V. S., Yuan, J., Amaratunga, G. A. J., Milne, W. I., Gllkes, K. W. R., Weiler, M., and Brown, L. M., Phys. Rev. B 48, 8016 (1993).Google Scholar
8 Bandis, C. and Pate, B. B., Appl. Phys. Lett. 69, 366 (1996).Google Scholar
9 Reinke, P. and Oelhafen, P., to be published in: Diam. and Rel. Materials (1997).Google Scholar
10 McFeely, F. R., Kowalczyk, S. P., Ley, L., Cavell, R. G., Poliak, R. A., and Shirley, D. A., Phys. Rev. B 9, 5268(1974).Google Scholar
11 Reinke, P., Francz, G., Ullman, J., and Oelhafen, P., Phys. Rev. B 54, 7067 (1996).Google Scholar
12 Reinke, P. and Oelhafen, P., J. Appl. Phys. (1997).Google Scholar
13 Schelz, S., Kania, P., Oelhafen, P., Giintherodt, H.-J., and Richmond, T., Surface Science 359, 227(1995).Google Scholar
14 Gröning, O., Küttel, O. M., Schaller, E., Gröning, P., and Schlapbach, L., Appl. Phys. Lett. 69, 476(1996).Google Scholar
15 Modinos, A., Field, thermoionic, and secondary electron emission spectroscopy (Plenum Press, New York, 1983).Google Scholar
16 Dadykin, A. A., Naumovets, A. G., Andreev, V. D., Nachalnaya, T. A., and Semenovich, V. A., Diam. and Rel. Materials 5, 771 (1996).Google Scholar