Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T18:28:46.505Z Has data issue: false hasContentIssue false

Integration of InxGa1−xN Laser Diodes with Dissimilar Substrates by Laser Lift-off

Published online by Cambridge University Press:  17 March 2011

William S. Wong
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, CA 94304
Michael Kneissl
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, CA 94304
Ping Mei
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, CA 94304
David W. Treat
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, CA 94304
Mark Teepe
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, CA 94304
Noble M. Johnson
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Continuous-wave (cw) indium-gallium nitride (InGaN) multiple-quantum-well (MQW) laser diodes (LDs) were successfully transferred from sapphire onto copper and diamond substrates using a two-step laser lift-off (LLO) process. Reduced threshold currents and increased differential quantum efficiencies were measured for LDs on Cu due to a 50% reduction of the thermal impedance. Light output for LDs on Cu was three times greater than comparable LDs on sapphire with a maximum output of 30 mW. Increased light output for LDs on diamond were also measure with a maximum output of 80 mW.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matushita, T., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys., Part 2 37, L627 (1998).Google Scholar
2. Wong, W.S., Sands, T., and Cheung, N.W., Appl. Phys. Lett. 72, 599 (1998).Google Scholar
3. Wong, W.S., Krüger, J., Cho, Y., Linder, B.P., Weber, E.R., Cheung, N.W., and Sands, T., Proceedings of the Symposium on LED for Optoelectronic Applications and the 28th State of the Art Programs on Compound Semiconductors 98–2, 377 (1998).Google Scholar
4. Wong, W.S., Wengrow, A.B., Cho, Y., Salleo, A., Quitoriano, N.J., Cheung, N.W., and Sands, T., J. Electron. Mater. 28, 1409 (1999).Google Scholar
5. Wong, W.S., Cheung, N.W., Sands, T., Kneissl, M., Bour, D.P., Mei, P., Romano, L.T., and Johnson, N.M., Appl. Phys. Lett. 75, (1999).Google Scholar
6. Song, Y.K., Diagne, M., Zhou, H., Nurmikko, A.V., Carter-Coman, C., Kern, R.S., Kish, F.A., and Krames, M.R., Appl. Phys. Lett. 74, 3720 (1999).Google Scholar
7. Wong, W.S., Cheung, N.W., Sands, T., Kneissl, M., Bour, D.P., Mei, P., Romano, L.T., and Johnson, N.M., Compound Semiconductor 5, 54 (Nov.-Dec. 1999).Google Scholar
8. Wong, W.S., Cheung, N.W., Sands, T., Kneissl, M., Bour, D.P., Mei, P., Romano, L.T., and Johnson, N.M., Appl. Phys. Lett. Appl. Phys. Lett. 77, 2822 (2000).Google Scholar
9. Kelly, M.K., Vaudo, R.P., Phanse, V.M., Görgens, L., Ambacher, O. and Stutzmann, M., Jpn. J. Appl. Phys. Part 2 38, L217 (1999).Google Scholar
10. Kneissl, M., Wong, W.S., Treat, D.W., Teepe, M., Myashita, N., Johnson, N.M., submitted to IEEE Journal of Selected Topics in Quantum Electronics (2000).Google Scholar
11. Wong, W.S., Krüger, J., Cho, Y., Linder, B.P., Weber, E.R., Cheung, N.W., and Sands, T., Proceedings of the Symposium on LED for Optoelectronic Applications and the 28th State of the Art Programs on Compound Semiconductors 98–2, 377 (1998).Google Scholar