Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:40:24.700Z Has data issue: false hasContentIssue false

Integration Aspects and Electrical Properties of SrBi2Ta2O9 for Non-Volatile Memory Applications

Published online by Cambridge University Press:  10 February 2011

D.J. Taylor
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, 3501 Ed Bluestein Blvd., MD:K10, Austin, TX 78721, USA
R.E. Jones
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, 3501 Ed Bluestein Blvd., MD:K10, Austin, TX 78721, USA
Y.T. Lii
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, 3501 Ed Bluestein Blvd., MD:K10, Austin, TX 78721, USA
P. Zurcher
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, 3501 Ed Bluestein Blvd., MD:K10, Austin, TX 78721, USA
P.Y. Chu
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, 3501 Ed Bluestein Blvd., MD:K10, Austin, TX 78721, USA
S.J. Gillespie
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, 3501 Ed Bluestein Blvd., MD:K10, Austin, TX 78721, USA
Get access

Abstract

Highlights and solutions to some of the challenges involved in integrating SrBi2Ta2O9 (SBT) capacitors with Pt electrodes on silicon wafers for non-volatile memory applications are discussed. These include the diffusion of Bi through the Pt bottom electrode during firing, capacitor patterning, and process damage that results from hydrogen containing atmospheres.

Next, studies of the temperature dependence of many of the important electrical properties of SBT are presented. These include the remanent polarization (2Pr), the non-volatile polarization (Pnv), and the coercive field (Ec) all of which are studied as functions of the pulse amplitude; fatigue resistance of 2Pr and Pnv; the retention; the small signal capacitance versus voltage behavior; and the current versus voltage behavior. These studies demonstrate that SBT looks very promising for ferroelectric non-volatile memories over the consumer application range (0 to 70 °C).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J. F. and Araujo, C.A. Paz de, Science 246, 1400 (1989).Google Scholar
2. Moazzami, R., Manier, P.D., Jones, R.E. Jr., Campbell, A.C., and Mogab, C.J., VLSI Tech. Symp. Digest p. 87 (1993).Google Scholar
3. Larsen, P.K., Cuppens, R., and Spierings, G.A.C.M. 128, 265 Ferroelectrics (1992).Google Scholar
4. Taylor, D.J., Larsen, P.K., Dormans, G.J.M., and Veirman, A.E.M. De, Integrated Ferroelectrics 7, 123 (1995).Google Scholar
5. Sumi, T., Moriwaki, N., Nakane, G., Nakakuma, T., Judai, Y., Uemoto, Y., Nagano, Y., Hayashi, S., Azuma, M., Otsuki, T., Kano, G., Cuchiaro, J.D., Scott, M.C., McMillan, L.D., and Araujo, C.A. Paz de, Integrated Ferroelectrics 6, 1 (1995).Google Scholar
6. Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).Google Scholar
7. Araujo, C.A., Cuchairo, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 627 (1995).Google Scholar
8. Vijay, D.P., Desu, S.B., Nagata, M., Zhang, X., and Chen, T.C., Ferroelectric Thin Films IV (Materials Research Society, Pittsburgh, 1995) pp 313.Google Scholar
9. Aurivillius, B., Arkiv Kemi 1, 463 (1949); 1, 449 (1949); 2, 519 (1950).Google Scholar
10. Araujo, C.A. Paz de, Cuchiaro, J.D., Scott, M.C., and McMillan, L. D, International Patent Publication No. WO 93/12542 and No. WO 93/12538 (24 June 1993).Google Scholar
11. Moazzami, R., Abt, N., Nissan-Cohen, Y., Shepard, W.H., Brassington, M.P., and Hu, C., VLSI Techn. Syposium Digest p. 61 (1991).Google Scholar
12. Larsen, P.K., Kampschoer, G.L.M., Ulenaers, M.J.E., Spierings, G.A.C.M., and Cuppens, R., AppI. Phys. Lett. 59, 611 (1991).Google Scholar
13. Chu, P.Y., Jones, R.E. Jr., Zurcher, P., Taylor, D.J., Jiang, B., Gillespie, S.J., Lii, Y.T., Kottke, M., Fejes, P. and Chen, W., J. Mat. Res. Comm. (to be published).Google Scholar
14. Amanuma, K., Hase, T., and Miyasaka, Y., Ferroelectric Thin Films IV (Materials Research Society, Pittsburgh, 1995) pp 2125.Google Scholar
15. Klee, M., Veirman, A. De, Taylor, D.J., and Larsen, P.K., Integrated Ferroelectrics 4, 197 (1995).Google Scholar
16. Jones, R.E. Jr., Zurcher, P., Chu, P., Taylor, D.J., Lii, Y.T., Jiang, B., Maniar, P.D., Gillespie, S.J., Microelectronic Engineering 29, 3 (1995).Google Scholar
17. Taylor, D.J., Jones, R.E. Jr.,, Zurcher, P., Jiang, B., Chu, P.Y., Lii, Y.T. and Gillespie, S.J., Appl. Phys. Lett. (to be published).Google Scholar
18. Spierings, G.A.C.M., Ulenaers, M.J. E., Kampschoer, G.L.M., Han, H.A.M. van and Larsen, P.K., Appl. Phys. Lett. 70, 2290 (1991).Google Scholar
19. Jaffe, B., Cook, W.R. Jr.,, and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971) pp 224229.Google Scholar
20. Subbarao, E.C., J. Phys. Chem. Solids 23, 665 (1962).Google Scholar