Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:51:49.018Z Has data issue: false hasContentIssue false

Integrated Optics/Electronics Using Electro-Optic Polymers

Published online by Cambridge University Press:  15 March 2011

Larry R. Dalton*
Affiliation:
Department of Chemistry, University of Washington Seattle, WA 98195-1700, U.S.A.
Get access

Abstract

Organic electro-optic materials afford the realization of devices with terahertz bandwidths, providing bandwidths are not limited by resistive losses in metal electrodes. Recent realization of electro-optic coefficients (at telecommunication wavelengths) on the order of 200 pm/V permits construction of devices with operating voltage requirements of 1 volt or less. In like manner, substantial progress has been made in both understanding and improving thermal and photostability suggesting that organic electro-optic materials can meet Telacordia standards. However, one of the most intriguing advances afforded by organic materials is their processability including the ability to be integrated with diverse materials. This communication discusses both the systematic improvement, by theoretically-inspired rational design, of relevant material properties and the development of a variety of new processing methodologies, including soft lithography methods, for the fabrication of stripline, cascaded prism, and ring microresonator devices. The fabrication of flexible devices is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dalton, L. R., J. Phys. Condens. Mater 15, R897 (2003).Google Scholar
2. Dalton, L. R., Harper, A. W., Ren, A., Wang, F., Todorova, G., Chen, J., Zhang, C., and Lee, M., Ind. Eng. Chem. Res. 38, 8 (1999).Google Scholar
3. Dalton, L. R., Adv. Polym. Sci. 158, 1 (2002).Google Scholar
4. Evmenenko, G., Boom, M. E. van der, Kmetko, J., Dogan, S. W., Marks, T. J., and Dutta, P., J. Phys. Chem. 115, 6722 (2001).Google Scholar
5. Zhao, Y. G., Wu, A., Lu, H. L., Chang, S., Lu, W. K., Ho, S. T., Boom, M. E. van der, and Marks, T. J., Appl. Phys. Lett. 79, 587 (2001).Google Scholar
6. Zhu, P., Boom, M. E. van der, Kang, H., Evmenenko, G., Dutta, P., and Marks, T. J., Chem. Mater. 14, 4982 (2002).Google Scholar
7. Sinyukov, A. M. and Hayden, L. M., Opt. Lett. 27, 55 (2002).Google Scholar
8. Hayden, L. M., Sinyukov, A. M., Leahy, M. R., French, J., Lindahl, P., Herman, W. N., Twieg, R. J., He, M., J. Polym. Sci., Part B (Polym. Phys.) 41, 2492 (2003).Google Scholar
9. Lee, M., Katz, H. E., Erben, C., Gill, D. M., Gorpalan, P., Heber, J. D., and McGee, D. J., Science 298, 140 (2002).Google Scholar
10. Chen, D., Fetterman, H. R., Chen, A., Steier, W. H., Dalton, L. R., Wang, W., Shi, Y., Appl. Phys. Lett. 70, 3335 (1997).Google Scholar
11. Chen, D., Bhattacharya, D., Udupa, A., Tsap, B., Fetterman, H. R., Chen, A., Lee, S. S., Chen, J., Steier, W. H., and Dalton, L. R., IEEE Photon. Tech. Lett. 11, 54 (1999).Google Scholar
12. Robinson, B. H. and Dalton, L. R., J. Phys. Chem. 104, 4785 (2000).Google Scholar
13. Dalton, L. R., Robinson, B. H., Jen, A. K. Y., Steier, W. H., and Nielsen, R., Opt. Mater. 21, 19 (2003).Google Scholar
14. Shi, Y., Zhang, C., Zhang, H., Bechtel, J. H., Dalton, L. R., Robinson, B. H., and Steier, W. H., Science 288, 119 (2000).Google Scholar
15. Luo, J., Liu, S., Haller, M., Li, H., Kim, T. D., Kim, K. S., Tang, H. Z., Kang, S. H., Jang, S. H., Ma, H., Dalton, L. R., and Jen, A. K. Y., Proc. SPIE 4991, 520 (2003).Google Scholar
16. Luo, J., Kim, T. D., Ma, H., Liu, S., Kang, S. H., Wong, S., Haller, M. A., Jang, S. H, Li, H., Barto, R R., Frank, C. W., Dalton, L. R., and Jen, A. K. Y., Proc. SPIE 5224, 104 (2003).Google Scholar
17. Galvan-Gonzalez, A., Belfield, K. D., Stegeman, G. I., Canva, M., Marder, S. R., Staub, K., Levina, G., and Twieg, R. J., J. Appl. Phys. 94, 756 (2003) and References cited therein.Google Scholar
18. DeRosa, M. E., He, M., Cites, J. S., Garner, S. M., and Tang, R., J. Phys. Chem. to be published.Google Scholar
19. Garner, S. M., Cites, J. S., He, M., and Wang, J., Appl. Phys. Lett. to be published.Google Scholar
20. Dalton, L. R., Harper, A. W., Ghosn, R., Steier, W. H., Ziari, M., Fetterman, H., Shi, Y., Mustacich, R., Jen, A. K.-Y., and Shea, K. J., Chem. Mater. 7, 1060 (1995).Google Scholar
21. Mao, S. S. H., Ra, Y., Gao, L., Zhang, C., and Dalton, L. R., Chem. Mater. 10, 146 (1998).Google Scholar
22. Suresh, S., Chen, S., Topping, C. M., Ballato, J. M., and Smith, D. W. Jr., Proc. SPIE 4991, 530 (2003).Google Scholar
23. Haller, M., Luo, J., Li, Hongxian, Kim, T. D., Liao, Y., Robinson, B., Dalton, L. R., and Jen, A. K. Y., to be published.Google Scholar
24. Han, J., Seo, B. J., Fetterman, H. R., Zhang, H., and Zhang, C., Proc. SPIE 4991, 562 (2003).Google Scholar
25. Jin, D., Dinu, R., Parker, T. C., Barlund, A., Bintz, L., Chen, B., Flaherty, C., Guan, H. W., Huang, D., Kressbach, J., Londergan, T., Mino, T. D., Todorova, G., and Yang, S., Proc. SPIE 4991, 610 (2003).Google Scholar
26. Yacoubian, A., Chuyanov, V., Garner, S. M., Steier, W. H., Ren, A. S., and Dalton, L. R., IEEE J. Sel. Topics in Quantum Electronics 6, 810 (2000).Google Scholar
27. Bechtel, J. H., Shi, Y., Zhang, H., Steier, W. H., Zhang, C. H., and Dalton, L. R., Proc. SPIE 4114, 58 (2000).Google Scholar
28. An, D., Shi, Z., Sun, L., Taboada, J.M., Zhou, Q., X.Lu, Chen, R.T., Tang, S., Zhang, H., Steier, W.H., Ren, A., and Dalton, L. R., Appl. Phys. Lett. 76, 1972 (2000).Google Scholar
29. Sun, L., Kim, J., Jang, C., an, D., Lu, X., Zhou, Q., Taboada, J.M., Chen, R.T., Maki, J.J., Tang, S., Zhang, H., Steier, W.H., Zhang, C., and Dalton, L. R., Opt. Eng. 40, 1217 (2001).Google Scholar
30. Raibiei, P., Steier, W. H., Zhang, C., and Dalton, L. R., Int. Opt. Commun. 1, 14 (2002).Google Scholar
31. Raibiei, P., Steier, W. H., Zhang, C., and Dalton, L. R., OSA Trends in Optics and Photonics. Optical Fiber Commun. Conf. 70, 31 (2002).Google Scholar
32. Rabiei, P., Steier, W. H., Zhang, C., and Dalton, L. R., J. Lightwave Technol. 20, 1968 (2002).Google Scholar
33. Chen, A., Chuyanov, V., Marti-Carrera, F. I., Garner, S. M., Steier, W. H., Chen, J., Sun, S. S., and Dalton, L. R., Opt. Eng. 39, 1507 (2000).Google Scholar
34. Garner, S.M., Lee, S.S., Chuyanov, V., Chen, A., Yacoubian, A., Steier, W.H., and Dalton, L.R., IEEE J. Quant. Electron. 35, 1146 (1999).Google Scholar
35. Song, H. C., Oh, M. C., Ahn, S. W., and Steier, W. H., Appl. Phys. Lett. 82, 4432 (2003).Google Scholar
36. Huang, Y., Paloczi, G. T., Yariv, A., Zhang, C., and Dalton, L. R., J. Phys. Chem. in press.Google Scholar
37. Maune, B., Lawson, R., Gunn, C., Scherer, A., and Dalton, L., Appl. Phys. Lett., 83, 4689 (2003) and unpublished results on OEO materials.Google Scholar
38. Zhang, C., Zhang, H., Oh, M. C., Dalton, L. R., and Steier, W. H., Proc. SPIE 4491, 537 (2003).Google Scholar
39. Listing of recent articles and articles in press can be obtained at the following websites: http://depts.washington.edu/eooptic and http://stc-mditr.orgGoogle Scholar
40. Ermer, S., Girton, D.G., Dries, L.S., Taylor, R.E., Eades, W., Eck, T.E. Van, Moss, A.S., and Anderson, W.W., Proc. SPIE 3949, 148 (2000).Google Scholar
41. He, M., Leslie, T. M., Sinicropi, J. A.. Chem. Mater. 14, 4662 (2002).Google Scholar
42. He, M., Leslie, T. M., Sinicropi, J. A., Garner, S. M., Reed, L. D.. Chem. Mater. 14, 4669 (2002).Google Scholar
43. Breitung, E. M., Shu, C. F., and McMahon, R. J., J. Am. Chem. Soc. 122, 1154 (2000).Google Scholar
44. Sullivan, P. A., Bhattacharjee, S., Eichinger, B. E., Firestone, K., Robinson, B. H., and Dalton, L. R., Proc. SPIE, 5351, in press (2004).Google Scholar
45. Dalton, L. R., Pure and Appl. Chem., in press.Google Scholar