Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:54:49.379Z Has data issue: false hasContentIssue false

Instrumental Limitations and Current Prospects for Materials Research with the Latest Generation of High-Resolution Electron Microscopes

Published online by Cambridge University Press:  25 February 2011

David J. Smith*
Affiliation:
High Resolution Electron Microscope, Department of Metallurgy and Materials Science, University of Cambridge, CB2 3RQ, U.K.
Get access

Extract

The macroscopic properties of most materials depend directly on their microstructure and its local variability at the atomic level. Recent trends in high resolution electron microscopes (HREMs) have led to resolving powers on this scale, which in turn has made these instruments invaluable to many materials science investigations. The purposes of this short review are firstly to outline some of the fundamentals of high resolution image formation and interpretation and then to summarise some of the latest instrumental developments. Some recent applications are briefly described to provide some appreciation of the wide range of materials currently being investigated with the HREM. The impact of this work should be apparent from reference to other papers in this volume as well as several recent reviews [1–3] and special conference proceedings [4–5]. The likelihood of further developments in instrumentation and the necessity for complementary information from other techniques are also briefly considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neumann, W., Pasemann, M. & Heydenreich, J., in Crystals, Growth, Properties and Applications, Vol.7, 1 (Springer- Verlag, Berlin, 1982).Google Scholar
2. Cowley, J.M., Ultramicroscopy 8, 1 (1982).10.1016/0304-3991(82)90272-8Google Scholar
3. Smith, D.J., Helvetica Physica Acta. 56, 463 (1983).Google Scholar
4. Ultramicroscopy, Vol.8, No. 1 (1982).Google Scholar
5. J. Microscopy, Vol. 129, No. 3 and Vol.130, Nos. 2 and 3 (1983).Google Scholar
6. Spence, J.C.H., Experimental High Resolution Electron Microscopy (Clarendon, Oxford, 1981).10.1063/1.2914772Google Scholar
7. Cowley, J.M., Diffraction Physics (North Holland, Amsterdam, 2nd Edition, 1984).Google Scholar
8. Saxton, W.O., Howie, A., Mistry, A. & Pitt, A., Inst. Phys. Conf. Ser. 36, 119 (1977).Google Scholar
9. Smith, D.J. & O'Keefe, M.A., Acta. Cryst. A 39, 139 (1983).10.1107/S0108767383000239Google Scholar
10. Spence, J.C.H. & Olsen, A., Phil. Mag. A 43, 945 (1981).Google Scholar
11. Goodman, P. & Moodie, A.F., Acta. Cryst. A 30, 280 (1974).10.1107/S056773947400057XGoogle Scholar
12. O'Keefe, M.A. & Buseck, P.R., Trans. ACA 15, 27 (1979).Google Scholar
13. Krivanek, O.L. & Rez, P., in Proc. 38th Ann. Meet. EMSA (Ed. Bailey, G.W.) pp. 170171 (Claitor's, Baton Rouge, 1980).Google Scholar
14. Smith, D.J., Camps, R.A. & Freeman, L.A., Inst. Phys. Conf. Ser. 61, 381 (1982).Google Scholar
15. Wood, G.J., Bursill, L.A. & Smith, D.J., J. Microscopy 129, 263 (1983).10.1111/j.1365-2818.1983.tb04183.xGoogle Scholar
16. Bursill, L.A., Blanchin, M.G., Mebarek, A. & Smith, D.J., Rad. Effs. 74, 253 (1983).10.1080/00337578308218419Google Scholar
17. Bursill, L.A. & Blanchin, M.G., J. de Physique (Letters) 144, 1165 (1983).Google Scholar
18. Smith, D.J., Bursill, L.A. & Blanchin, M.G., Phil. Nag. A 50, 473 (1984).Google Scholar
19. Bursill, L.A., Jun, Shen Guang, Smith, D.J. & Blanchin, M.G., Ultramicroscopy, 13, 191 (1984).10.1016/0304-3991(84)90198-0Google Scholar
20. Hobbs, L.W., in Proc. 42nd Ann. Meet. EMSA (Ed. Bailey, G.W.), pp. 608611 (San Francisco Press, San Francisco, 1984).Google Scholar
21. Glaisher, R. & Spargo, A.E., Inst. Phys. Conf. Ser. 68, 185 (1984).Google Scholar
22. Marks, L.D. & Smith, D.J., J. Microscopy 130, 249 (1983).10.1111/j.1365-2818.1983.tb04222.xGoogle Scholar
23. Marks, L.D. & Smith, D.J., Nature 303, 316 (1983).10.1038/303316a0Google Scholar
24. Smith, D.J. & Marks, L.D., Ultramicroscopy, in press (see also contributed paper in these proceedings)Google Scholar
25. Takayanagi, K., Kobayashi, K., Kodaira, Y., Yokoyama, Y. & Yagi, K., in Proc. 7th Int. Conf. HVEM (Berkeley, 1983) pp. 4752.Google Scholar
26. Smith, D.J., Freeman, L.A., McMahon, R.A., Ahmed, H., Pitt, M.G. & Peters, T.B., J. Appl. Phys. 56, 2207 (1984).10.1063/1.334279Google Scholar
27. Cherns, D., Spence, J.C.H., Anstis, G.R. & Hutchison, J.L., Phil. Mag. A 46, 849 (1982).10.1080/01418618208236936Google Scholar
28. Tung, R.T., Gibson, J.M. & Poate, J.M., Mat. Res. Symp. 14, 435 (1984).10.1557/PROC-14-435Google Scholar
29. Hutchison, J.L., in Electron Microscopy 1984, Vol.1, 505 (1984).Google Scholar
30. Cherns, D., in Proc. 42nd Ann. Meet. EMSA (Ed. Bailey, G.W.) pp. 376379 (San Francisco Press, San Francisco, 1984).Google Scholar
31. Gibson, J.M., Ultramicroscopy, 14, 1 (1984).10.1016/0304-3991(84)90101-3Google Scholar
32. Smith, D.J., Ness, J.N., Page, T.F. & Jepps, N.W., unpublished results.Google Scholar
33. Wood, G.J., Stobbs, W.M. & Smith, D.J., Phil. Mag. A 50, 375 (1984).10.1080/01418618408244234Google Scholar
34. Stobbs, W.M., Wood, G.J. & Smith, D.J., Ultramicroscopy, 14 145 (1984).10.1016/0304-3991(84)90119-0Google Scholar
35. Bourret, A. & Colliex, C., Ultramicroscopy, 9, 135 (1982).Google Scholar
36. Saxton, W.O., Smith, D.J. & Erasmus, S.J., J.Microscopy 130, 187 (1983)10.1111/j.1365-2818.1983.tb04217.xGoogle Scholar