Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:34:24.917Z Has data issue: false hasContentIssue false

Inspection and Manipulation of Ferroelectrics on the Nanometer Scale

Published online by Cambridge University Press:  10 February 2011

L. M. Eng*
Affiliation:
Institute of Applied Photophysics, University of Technology DresdenD-01062 Dresden, Germany, [email protected]
Get access

Abstract

The increasing interest in scanning probe instruments (SPM) stems from the outstanding possibilities in measuring electric, magnetic, optical, and structural properties of surfaces and surface layers down to the molecular and atomic scale. For the inspection of ferroelectric materials both the scanning force microscope (SFM) and the scanning near-field optical microscope (SNOM) are promising techniques revealing information on the polarization vector and the electric field induced stress within a crystal. Polarization sensitive modes are discussed as is friction force microscopy, dynamic force microscopy (DFM) and voltage modulated SFM. From these measurements, 180° domain walls (c-domains) are resolved down to 4 nm, while 3-dimensional polarization mapping in ferroelectric BaTiO3 ceramics reveals a 25 nm resolution. On the other hand, non-contact DFM measurements in ultra-high vacuum are able to resolve ferroelectric surfaces down to the atomic scale. Then also the chemical heterogeneity at the sample surface is differentiated from ferroelectric domains down to a 5 nm lateral resolution, taking advantage of the short range chemical forces. SNOM in contrast probes the optical properties of ferroelectric crystals both in transmission and reflection. Here image contrast arises from changes in the refractive index between different domains as well as at domain walls. In addition, SPM instruments are used for the local modification of ferroic samples by applying a relatively high voltage pulse to the SPM tip. Domains with diameters down to 30 nm are thus created with the size depending on both the switching and material parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Binnig, G. and Rohrer, H., Helv. Phys. Acta 55, 726 (1982).Google Scholar
2. Saurenbach, F. and Terris, B.D., Appl. Phys. Lett. 56, 1703 (1990).10.1063/1.103122Google Scholar
3. Shindo, H., et al., J. Chem. Soc., Chem. Commun. 10, 760 (1990); M. Suzuki, et al., J. Vac. Sci. Technol. A, 8 (631).10.1039/c39900000760Google Scholar
4. Glatz-Reichenbach, J., et al., Ferroelecirics 109, 309 (1990).10.1080/00150199008211431Google Scholar
5. Eng, L.M. and Fuchs, H., Mater. Sci. Eng. A139 230 (1991).10.1016/0921-5093(91)90622-TGoogle Scholar
6. Ludwig, Ch., et al., Phys. Stat. Solidi A131 25 (1992).10.1002/pssa.2211310104Google Scholar
7. Walba, D.M., et al., Enantiomer 1, 267 (1996).Google Scholar
8. Nakagiri, N., et al., Nanotechnology 8, 32 (1997).10.1088/0957-4484/8/3A/007Google Scholar
9. Novotny, V.J. and Karis, T.E., Appl. Phys. Lett. 71, 52 (1997).10.1063/1.119466Google Scholar
10. Gtithner, P., et al., Jntegr. Ferroelectr. 1, 379 (1992).10.1080/10584589208215725Google Scholar
11. Cho, Y., et al., Jap. J. Appl. Phys., part 1, 36, 360 (1997).10.1143/JJAP.36.360Google Scholar
12. Eng, L.M., Fousek, J., and Gi∼nter, P., Ferroelectrics 66 49 (1996).10.1080/00150199608218030Google Scholar
13. Eng, L.M., et al., J. Vac. Sci. Technol. B14 1191 (1996).10.1116/1.588512Google Scholar
14. Bovtoun, V.P., et al., Ferroelectrics 190, 161 (1997); L. Ceresara, et al., Supercond Sci. Technol. 9, 671 (1996); M. Jooho, et al., J. Am. Ceram. Soc. 80, 2613 (1997); V. Joshi and M.L. Mecartney, J Mater. Res. 8, 2668 (1993); T.W. Kim, et al., Solid State Commun. 96, 95 (1995); A. Schönecker and M. Weihnacht, Wiss. Z. Tech. Univ. Dresden 46, 64 (1997); A. Seifert, et al., J. Mater. Res. 10, 680 (1995); J. Zhang, et al., J. Vac. Sci. Technol. B14, 1600 (1996).10.1080/00150199708014110Google Scholar
15. Eng, L.M., Fousek, J., and Gtinter, P., Ferroelectrics 191, 211 (1997).10.1080/00150199708015641Google Scholar
16. Bluhm, H., et al., Phys. Rev. B55, 4 (1997); A.L. Gruverman, et al., Jap. J. Appl. Phys., part 1, 36, 2207 (1997); R. Lüthi, et al., J. Appl. Phys. 74, 7461 (1993).10.1103/PhysRevB.55.4Google Scholar
17. Franke, K. and Weihnacht, M., Ferroelecir. Lett. Sect. 19, 25 (1995).10.1080/07315179508205938Google Scholar
18. Abplanalp, M. and Eng, L.M., Appl. Phys. A66, S231 (1998).10.1007/s003390051136Google Scholar
19. Eng, L.M., Annual Report, Inst. Quantum Electr., ETH Zürich, p. 65 (1996).Google Scholar
20. Eng, L.M., et at., Appl. Phys. Lett. 74, 233 (1999).10.1063/1.123266Google Scholar
21. Arlt, G. and Sasko, P., J. Appl. Phys. 51, 4956 (1980).10.1063/1.328372Google Scholar
22. Bammerlin, M., et al., Probe Microscopy 1, 3 (1997).Google Scholar
23. Eng, L.M., et al., Appl. Surf Science 140, 253 (1999).10.1016/S0169-4332(98)00536-4Google Scholar
24. Liithi, R., et al., Surf Sci. Lett. 285, L498 (1993); H. Haefke, et al., Ferroelectrics 151, 143 (1994).Google Scholar
25. Strictly speaking this is valid only close to the sample surface!Google Scholar
26. Bae, M.-K., et al., Jap. J. Appl. Phys. 33, 1390 (1994).10.1143/JJAP.33.1390Google Scholar
27. Moyer, P.J., et al., Appl. Phys. Lett. 67, 2129 (1995).10.1063/1.114742Google Scholar
28. Yang, T.J., et al., Appl. Phys. Lett. 71, 1960 (1997); E.B. McDaniel, et al., J. Appl. Phys. 80, 1085 (1996); N. García, et al., Ferroelectrics 184, 1 (1996).10.1063/1.119755Google Scholar
29. Smolyaninov, I.I., et al., Optics Lett. 22, 1592 (1997).10.1364/OL.22.001592Google Scholar
30. Eng, L.M., et al., Optics Lett. (1999) manuscript in preparation.Google Scholar
31. Massanell, J., Garcia, N., and Zlatkin, A., Optics Lett. 21, 12 (1996).10.1364/OL.21.000012Google Scholar
32. Gtithner, P. and Dransfeld, K., Appl. Phys. Lett. 66 1137 (1992).10.1063/1.107693Google Scholar
33. Gruverman, A.L., et al., Appl. Phys. Lett. 69, 3191 (1996); O. Auciello et al., MRS Bulletin 23, 33 (1998).10.1063/1.117957Google Scholar
34. Eng, L.M. and Abplanalp, M., Appl. Phys. A66, S679 (1998).10.1007/s003390051221Google Scholar
35. Eng, L.M., et al., J. de Physique IV 8, Pr9– (1998).Google Scholar
36. Gruverman, A.L., et al., Nanotechnology 8, 38 (1997).10.1088/0957-4484/8/3A/008Google Scholar
37. Eng, L.M., Rosenman, G., et al., J. Appl. Phys. 83, 5973 (1998).10.1063/1.367462Google Scholar