No CrossRef data available.
Article contents
Inspection and Manipulation of Ferroelectrics on the Nanometer Scale
Published online by Cambridge University Press: 10 February 2011
Abstract
The increasing interest in scanning probe instruments (SPM) stems from the outstanding possibilities in measuring electric, magnetic, optical, and structural properties of surfaces and surface layers down to the molecular and atomic scale. For the inspection of ferroelectric materials both the scanning force microscope (SFM) and the scanning near-field optical microscope (SNOM) are promising techniques revealing information on the polarization vector and the electric field induced stress within a crystal. Polarization sensitive modes are discussed as is friction force microscopy, dynamic force microscopy (DFM) and voltage modulated SFM. From these measurements, 180° domain walls (c-domains) are resolved down to 4 nm, while 3-dimensional polarization mapping in ferroelectric BaTiO3 ceramics reveals a 25 nm resolution. On the other hand, non-contact DFM measurements in ultra-high vacuum are able to resolve ferroelectric surfaces down to the atomic scale. Then also the chemical heterogeneity at the sample surface is differentiated from ferroelectric domains down to a 5 nm lateral resolution, taking advantage of the short range chemical forces. SNOM in contrast probes the optical properties of ferroelectric crystals both in transmission and reflection. Here image contrast arises from changes in the refractive index between different domains as well as at domain walls. In addition, SPM instruments are used for the local modification of ferroic samples by applying a relatively high voltage pulse to the SPM tip. Domains with diameters down to 30 nm are thus created with the size depending on both the switching and material parameters.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999