Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:32:15.568Z Has data issue: false hasContentIssue false

In-Situ Surface Photo-Absorption Study of Movpe Surface

Published online by Cambridge University Press:  22 February 2011

Naoki Kobayashi*
Affiliation:
NTT Basic Research Laboratories Atugi-shi, Kanagawa 243-01, Japan
Get access

Abstract

In-situ surface photo-absorption (SPA) method was applied to study the dynamic surface processes and the static surface structures during metal-organic vapor phase epitaxy (MOVPE). Observed spectra in near-ultaviolet and visible regions consist of an anisotropic dielectric response due to surface dimer-bonds as well as an isotropic response probably due to surface back-bonds. Time-resolved spectra showing dynamic changes of surface can be measured by the use of optical multichannel analyzer. The rate of surface decomposition of source molecule was measured as the change of reflectivity at a fixed wavelength. The decomposition of source molecule was characterized quantitatively, and various effects on the decomposition were studied. The style of decomposition and the activation energy depended on the substituent of source molecule and the rate of decomposition was affected by the surface potential and the strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saito, H., Uwai, K., and Kobayashi, N., Jpn. J. Appl. Phys. 32, 4440 (1993).Google Scholar
2. Ando, S., Kobayashi, N., and Ando, H., Jpn. J. Appl. Phys. 32, L1293 (1993).Google Scholar
3. Kobayashi, N. and Horikoshi, Y., Jpn. J. Appl. Phys. 28, L1880 (1989).Google Scholar
4. Stringfellow, G. B., in Organometallic Vapor-Phase Epitaxy: Theory and Practice, (Academic Press Inc, 1989).Google Scholar
5. Kobayashi, N. and Horikoshi, Y., Jpn. J. Appl. Phys. 29, L702 (1990).Google Scholar
6. Horikoshi, Y., Kawashima, M., and Kobayashi, N., J. Crystal Growth 111, 200 (1991).Google Scholar
7. Chang, Y-C. and Aspnes, D. E., Phys. Rev. B41, 12002 (1990).Google Scholar
8. Yamauchi, Y., Uwai, K., and Kobayashi, N., Jpn. J. Appl. Phys. 32, 3363 (1993).Google Scholar
9. Kamiya, I., Aspnes, D. E., Tanaka, H., Florez, L. T., Harbison, J. P., and Bhat, R., Phys. Rev. Lett. 68, 627 (1992).Google Scholar
10. Kisker, D. W., Fuoss, P. H., Tokuda, K. L., Renaudo, G., Brennan, S., and Kahn, J. L., Appl. Phys. Lett. 56, 2025 (1990).Google Scholar
11. Kobayashi, Y. and Kobayashi, N., to be published in Jpn. J. Appl. Phys. 33 (1994).Google Scholar
12. Aspnes, D. E., Chang, Y-C., Studna, A. A., Florez, L. T., Farrell, H. H., and Harbison, J. P., Phys. Rev. Lett. 64, 192 (1990).Google Scholar
13. Kobayashi, N. and Horikoshi, Y., Jpn. J. Appl. Phys. 30, L1443 (1991).Google Scholar
14. Kobayashi, N., Kobayashi, Y., Yamauchi, Y., and Horikoshi, Y., Appl. Surface Sci. 60/61, 544 (1992).Google Scholar
15. Kobayashi, N. and Horikoshi, Y., Jpn. J. Appl. Phys. 30, L319 (1991).Google Scholar
16. Kobayashi, N. and Kobayashi, Y., Thin Solid Films 225, 32 (1993).Google Scholar
17. Yamauchi, Y., Makimoto, T., Kobayashi, N., and Horikoshi, Y., Jpn. J. Appl. Phys. 29, L1353 (1990).Google Scholar
18. Yamauchi, Y. and Kobayashi, N., Jpn. J. Appl. Phys. 30, L2073 (1991).Google Scholar
19. Kobayashi, N. and Yamauchi, Y., J. Crystal Growth 124, 44 (1992).Google Scholar
20. Kobayashi, Y. and Kobayashi, N., to be published in J. Crystal Growth 126 (1994).Google Scholar