Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:31:51.001Z Has data issue: false hasContentIssue false

In-Situ Studies of Silicide Formation in Ti-Ta Bilayer Thin Films on Poly-Si

Published online by Cambridge University Press:  01 February 2011

A. S. Özcan
Affiliation:
Boston University, Physics Department, Boston, MA 02215
K. F. Ludwig Jr
Affiliation:
Boston University, Physics Department, Boston, MA 02215
C. Lavoie
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
C. Cabral Jr
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
J. M. E. Harper
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

We have studied the formation of titanium silicides in the presence of an ultra-thin layer of Ta, interposed between Ti and Si. In-situ x-ray diffraction (XRD), resistance measurements and elastic light scattering were used to study the thin film reactions in real time during ramp anneals to 1000°C. On poly-Si substrates the Ta thickness was varied from 0 to 1.5 nm while the Ti thickness was held constant at ∼27 nm. The time-resolved XRD shows that the volume fraction of C40 and metal-rich silicide phases grows with increasing Ta layer thickness. Increased Ta layer thicknesses also delay the growth of the C49 disilicide phase to higher temperatures. Among the Ta thicknesses we examined, 0.3 nm is the most effective in lowering the C49-C54 transformation temperature. Films with Ta layers thicker than 0.5 nm do not completely transform into the C54 phase. The texture of the C54 phase is also sensitive to the Ta thickness. The C54 disilicide film is predominantly (010) textured for the Ti / 0.3 nm Ta sample. The final C54 texture is significantly different for Ta layers thinner or thicker than the optimal 0.3 nm. This suggests that the most effective thickness for lowering the C54 formation temperature is related to the development of a strong (010) texture. The possibility of a template effect by the C40 or metal-rich Ti5Si3 phases is also discussed on the basis of texture considerations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ma, Z. and Allen, L. H., Phys. Rev. B 49, 13501 (1994).Google Scholar
2. Roy, R. A., Cabral, C. Jr, Saenger, K. L., Brauer, S., Jordan-Sweet, J., Morales, G., Ludwig, K. F. Jr, Appl. Phys. Lett. 66, 1732 (1995).Google Scholar
3. Maex, K. and Rossum, M. V., Properties of Metal Silicides, (INSPEC) (1995).Google Scholar
4. Mouroux, A., Zhang, S. -L., Kaplan, W., Nygren, S., Ostling, M. and Petersson, C.S., Appl. Phys. Lett. 67, 975 (1996).Google Scholar
5. Cabral, C. Jr, Clevenger, L. A., Harper, J. M. E., d'Heurle, F. M., Roy, R. A., Saenger, K. L., Miles, G. L., Mann, R. W., J. Mat. Sci. 12, 304 (1997).Google Scholar
6. Harper, J. M. E., Cabral, C. Jr and Lavoie, C., Annu. Rev. Mater. Sci. 30, 523 (2000).Google Scholar
7. Zhang, S. -L., Lavoie, C., Cabral, C. Jr, Harper, J. M. E., d'Heurle, F. M., Jordan-Sweet, J., J. Appl. Phys. 85, 2617 (1999).Google Scholar
8. Dahan, R., Pelleg, J. and Zevin, L., J. Appl. Phys. 67, 2885 (1990).Google Scholar
9. Via, F. La, Mammoliti, F. and Grimaldi, M. G., J. Appl. Phys. 91, 633 (2002).Google Scholar
10. Jeon, H., Jung, B., Kim, Y.D., Yang, W. and Nemanich, R.J., J. Appl. Phys. 88, 2467 (2000).Google Scholar
11. Cocchi, R., Giubertoni, D., Ottaviani, G., Marangon, T., Mastracchio, G., Queirolo, G., Sabbadini, A., J. Appl. Phys. 89, 6079 (2001).Google Scholar
12. Clevenger, L. A., Cabral, C. Jr, Roy, R. A., Lavoie, C., Jordan-Sweet, J., Brauer, S., Morales, G., Ludwig, K. F. Jr, Stephenson, G. B., Thin Solid Films 289, 220 (1996).Google Scholar
13. Cabral, C. Jr, Clevenger, L. A., Harper, J. M. E., d'Heurle, F. M., Roy, R. A., Lavoie, C., Saenger, K. L., Miles, G. L., Mann, R. W., Nakos, J. S., Appl. Phys. Lett. 71 (24), 3531 (1997).Google Scholar
14. Quintero, A., Libera, M., Cabral, C., Lavoie, C., Harper, J.M.E., J. Appl. Phys. 89, 4879 (2001).Google Scholar
15. Kudielka, H. and Nowotny, H., Monatsh. Chem. 87, 31 (1956).Google Scholar