Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T08:49:45.738Z Has data issue: false hasContentIssue false

In-Situ Stm Studies on the Electrodeposition of Ultrathin Nickel Films

Published online by Cambridge University Press:  10 February 2011

O. M. Magnussen
Affiliation:
Abteilung Oberflächenchemie und Katalyse, Universität Ulm, D-89069 Ulm, Germany
F. A. Möller
Affiliation:
Abteilung Oberflächenchemie und Katalyse, Universität Ulm, D-89069 Ulm, Germany
A. Lachenwitzer
Affiliation:
Abteilung Oberflächenchemie und Katalyse, Universität Ulm, D-89069 Ulm, Germany
R. J. Behm
Affiliation:
Abteilung Oberflächenchemie und Katalyse, Universität Ulm, D-89069 Ulm, Germany
Get access

Abstract

An in-situ STM study of the initial stages of Ni electrodeposition on Au and Cu single-crystals is presented. On reconstructed Au(111) a complex, potential-dependent nucleation and growth process is found, involving selective Ni island formation at specific surface sites and growth of two types (compact and needle-like) of Ni monolayer islands. At higher coverages (1 ML ≤ θ ≤ 5 ML) an almost perfect layer-by-layer growth of a metallic Ni(111)-film was observed. Considerably rougher films were found on Au(100) and Cu(100).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hoare, J.P., J. Electrochem. Soc. 133, 2491 (1986).Google Scholar
[2] Zhou, M., Myung, N., Chen, X., Rajeshwar, K., J. Electroanal. Chem. 398, 5 (1995).Google Scholar
[3] Gómez, J., Pollina, R., Valles, E., J. Electroanal. Chem. 386, 45 (1995).Google Scholar
[4] Moffat, T.P., J. Electrochem. Soc. 142, 3767 (1995).Google Scholar
[5] Moller, F., Magnussen, O.M., Behm, R.J., Phys. Rev. Lett. 77, 5249 (1996)Google Scholar
[6] Möller, F., Magnussen, O.M., Behm, R.J., Phys. Rev. Lett. 77, 3165 (1996).Google Scholar
[7] Möller, F., Kintrup, J., Lachenwitzer, A., Magnussen, O.M., Behm, R.J., unpublished.Google Scholar
[8] Lachenwitzer, A., Vogt, M.R., Magnussen, O.M., Behm, R.J., submitted for publication.Google Scholar
[9] Magnussen, O.M., Hotlos, J., Nichols, R. J., Kolb, D.M., Behm, R. J., Phys. Rev. Lett. 64, 2929 (1990).Google Scholar
[10] Magnussen, O.M., Hotlos, J., Beitel, G., Kolb, D.M., Behm, R.J., J. Vac. Sci. Technol. B 9, 969(1991).Google Scholar
[11] Clavilier, J., Faure, R., Guinet, G., Durand, R., J. Electroanal. Chem. 107, 205 (1980).Google Scholar
[12] Vogt, M.R., Schilz, C.M., Möller, F., Magnussen, O.M., Behm, R.J., Surf. Sci., 367, L33 (1996).Google Scholar
[13] Benje, M., Eiermann, M., Pittermann, U., Weil, K.G., Ber. Bunsenges. Phys. Chem. 90, 435 (1986).Google Scholar
[14] Fleischmann, M., Saraby-Reintjes, A., Electrochim. Acta 29, 69 (1984).Google Scholar
[15] Barth, J.V., Brune, H., Erti, G., Behm, R.J., Phys. Rev. B 42, 9307 (1990).Google Scholar
[16] Chambliss, D.D., Wilson, R.J., Chiang, S., Phys. Rev. Lett. 66, 1721 (1991).Google Scholar
[17] Gao, X., Hamelin, A., Weaver, M.J., J. Chem. Phys. 95, 6993 (1991).Google Scholar
[18] Tao, N.J., Lindsay, S.M., Surf. Sci. 274, L546 (1992).Google Scholar
[19] Meyer, J.A., Baikie, I.D., Kopatzki, E., Behm, R.J., Surf. Sci. 365, L647 (1996).Google Scholar