Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:20:27.307Z Has data issue: false hasContentIssue false

In-Situ Processing of Mosi2-Base Composites

Published online by Cambridge University Press:  25 February 2011

N. Patibandla
Affiliation:
Center for Composite Materials and Structures, and Department of Materials Engineering Rensselaer Polytechnic Institute Troy, NY 12180
W.B. Hillig
Affiliation:
Center for Composite Materials and Structures, and Department of Materials Engineering Rensselaer Polytechnic Institute Troy, NY 12180
M.R. Ramakrishnan
Affiliation:
Center for Composite Materials and Structures, and Department of Materials Engineering Rensselaer Polytechnic Institute Troy, NY 12180
D.E. Alman
Affiliation:
Center for Composite Materials and Structures, and Department of Materials Engineering Rensselaer Polytechnic Institute Troy, NY 12180
N.S. Stoloff
Affiliation:
Center for Composite Materials and Structures, and Department of Materials Engineering Rensselaer Polytechnic Institute Troy, NY 12180
Get access

Abstract

Three different methods of preparing Mosi2 and composites reinforced with ceramic fibers by reactive in-situ processing are described. Reactive powder sintering (co-synthesis) of elemental powders, chemical vapor infiltration/deposition and reactive vapor infiltration are examined. Monolithic Mosi2, SiC particle-reinforced Mosi2 or fibrous Mosi2 composites reinforced with Nicalon fiber were prepared. The advantages and disadvantages of these processes relative to more traditional processing techniques such as HIPing of prealloyed powders, mechanical alloying and a reported in-situ displacement reactions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carter, D. H. and Hurley, G. H., J. Am. Ceram. Soc., 74, C70 (1987)Google Scholar
2. Carter, D. H., Petrovic, J. J., Honnel, R. E. and Gibbs, W. S., Ceram. Eng. Sci. Proc., 10, 1121, (1989).CrossRefGoogle Scholar
3. Gac, F. D. and Petrovic, J. J., J. Am. Ceram. Soc., 68, C200 (1985)CrossRefGoogle Scholar
4. Gibbs, W. S., Petrovic, J. J. and Honnel, R. E., Ceram. Eng. Sci. Proc., 8, 645, (1987).CrossRefGoogle Scholar
5. Carter, D. H., Gibbs, W. S. and Petrovic, J. J. in Proc. Third Int. Symp. Ceramic Materials and Components for Engines (Am. Ceram. Soc., Westerville, OH, 1989) p. 977.Google Scholar
6. Lim, C. B., Yano, T. and Iseki, T., J. Mater. Sci., 24, 4144, (1989).CrossRefGoogle Scholar
7. Sadananda, K., Jones, H., Feng, J., Petrovic, J. J. and Vasudevan, A. K., Ceram. Eng. Sci. Proc., 12, 1671, (1991).CrossRefGoogle Scholar
8. Aiken, R. M. Jr., Ceram. Eng. Sci. Proc., 10, 1643, (1991).CrossRefGoogle Scholar
9. Alman, D. E. and Stoloff, N. S. in Intermetallic Matrix Composites II, Edited by Mirade, D. B., Auton, D. L. and Graves, J. A., (MRS Symp. Proc., 273, Pittsburgh, PA, 1992) p. 247.Google Scholar
10. Alman, D. E. and Stoloff, N. S., Scripta Metall., 28, 1525, (1993).CrossRefGoogle Scholar
11. Alman, D. E., Ph.D Thesis, Rensselaer Polytechnic Institute, (1993)Google Scholar
12. Maloney, M. J. and Hecht, R. J., Mat. Sci. and Eng.,A155, 19, (1992).CrossRefGoogle Scholar
13. Jayashankar, S. and Kaufman, M. J., Scripta Metall., 26, 1245, (1992).CrossRefGoogle Scholar
14. Henager, C. H. Jr., Brimhall, J. L. and Hirth, J. P., Scripta Metal., 26, 585, (1992).CrossRefGoogle Scholar
15. Cotton, J. D., Kim, Y. S. and Kaufman, M. J., Mat. Sci. and Eng., A144, 287, (1991).CrossRefGoogle Scholar
16. Jayashankar, S. and Kaufman, M. J., J. Mater. Res., 8, 1428, (1993).CrossRefGoogle Scholar
17. West, G. A. and Beeson, K.W. in Proc. 10th Int. Conf. on CVD, Edited by Cullen, G. W., (The Electrochem. Soc., Pennington, NJ, 1987), p. 720 Google Scholar
18. Inoue, S., Toyokura, N, Nakamura, T., Maeda, M. and Takagi, M., J. Electrochem. Soc., 130, 1603, (1983).CrossRefGoogle Scholar
19. Kehr, D. E. R. in Proc. 6th Int. Conf. on CVD, Edited by Donaghey, L.F. and Rai-Choudhury, P., (The Electrochem. Soc, Pennigton, NJ, 1977), p. 511.Google Scholar
20. Patibandla, N. and Hillig, W. B., to appear in J. Mater. Synthesis and ProcessingGoogle Scholar
21. Luthra, K. L. and Spacil, H.S., J. Electrochem. Soc., 129, 649, (1982).CrossRefGoogle Scholar
22. Patibandla, N. and Hillig, W. B., J. Am. Ceram. Soc., 76, 1630, (1993).CrossRefGoogle Scholar
23. Patibandla, N., Hillig, W. B. and Ramakrishnan, M. R. in Proc. of the Ceramic Matrix Composites Symp. of the 95th Annual Meeting, (Am. Ceram. Soc., Westerville, OH). (in press)Google Scholar
24. Gage, P. R. and Bartlett, R. W., Trans. Met. Soc. AIME 233, 832, (1965).Google Scholar
25. Cox, A. R. and Brown, R., J. Less-Common Metals, 6, 51, (1964).CrossRefGoogle Scholar
26. Orszagh, J. and Porten, H. Vander, Rev. int. Htes Temp. et Refract. 11, 109, (1974).Google Scholar
27. Pascal, P., editor, Nouveau Traite de Chimie Minerale, Masson et Cie, Paris (1963).Google Scholar