Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T12:37:36.447Z Has data issue: false hasContentIssue false

In-Situ Observation of Thermal Amplification of Photogenerated Optical Anisotropy of Films of Azobenzene Polymers

Published online by Cambridge University Press:  10 February 2011

Masatoshi Kidowaki
Affiliation:
Tokyo Institute of Technology, Research Laboratory and Resources Utilization, Yokohama, JAPAN, [email protected]
Takenori Fujiwara
Affiliation:
Tokyo Institute of Technology, Research Laboratory and Resources Utilization, Yokohama, JAPAN, [email protected]
Shin'ya Morino
Affiliation:
Tokyo Institute of Technology, Research Laboratory and Resources Utilization, Yokohama, JAPAN, [email protected]
Kunihiro Ichimura
Affiliation:
Tokyo Institute of Technology, Research Laboratory and Resources Utilization, Yokohama, JAPAN, [email protected]
Joachim Stumpe
Affiliation:
Institute for Thin Film Technology and Microsensorics, Erieseering 42, 10319 Berlin, Germany
Get access

Abstract

Thin films of polymers containing p-cyanoazobenzene side chains were studied to reveal its applicability for optical storage media, surface grating optics and aligning films for liquid crystal (LC) display devices. We followed the generation of optical anisotropy of LPLirradiated films of three polymethacrylates with azobenzene side chains exhibiting amorphous, crystalline and liquid-crystalline natures during heat treatment by mean of an ellipsometry and polarized UV-visible spectroscopy. Whereas photogenerated optical anisotropy of amorphous polymer films disappeared above glass transition temperature, the photo-induced anisotropy of films of liquid crystalline and crystalline polymer films was significantly amplified by heat treatment. In case of crystalline polymers amplified optical anisotropy was maintained even at 300°C whereas partial decomposition was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Anderle, K., Birenheide, R., Werner, M. J. A., and Wendorff, J. H., Liq. Cryst., 9, 691 (1991).Google Scholar
2 Xie, S., Natansohn, A., and Rochon, P., Chem. Mater., 5, 403 (1993).Google Scholar
3 Polymers as Electrooptical and Photooptical Active Media, Ed. Shibaev, V., Springer, 1996 Google Scholar
4 Rochon, P., Gosselin, J., Natansohn, A., and Xie, S., Appl. Phys. Lett., 60, 4 (1992).Google Scholar
5 Ichimura, K., Akiyama, H., Ishizuki, N., and Kawanishi, Y., Makromol. Chem., Rapid Commun., 14, 813 (1993).Google Scholar
6 Läsker, L., Stumpe, J., Fischer, T., Rutloh, M., Kostromin, S., and Ruhmann, R., Mol. Cryst. Liq. Cryst., 261, 371 (1995).Google Scholar
7 Fischer, T., Läsker, L., Czapla, S., Rübner, J., and Stumpe, J., Mol. Cryst. Liq. Cryst., 298, 213 (1997).Google Scholar
8 Fischer, T., Läsker, L., Rutloh, M., Czapla, S., and Stumpe, J., Mol. Cryst. Liq. Cryst., 299, 293 (1997).Google Scholar
9 Ichimura, K., in Ref. 3, pp. 138172.Google Scholar
10 Läsker, L., Stumpe, J., Fischer, T., Rutloh, M., Kostromin, S., and Ruhmann, R., Mol. Cryst. Liq. Cryst., 261, 371 (1995).Google Scholar
11 Ruhmann, R, Polym. International, 43, 103 (1997).Google Scholar
12 Morino, S., Kidowaki, M., and Ichimura, K., unpublished results.Google Scholar
13 Natansohn, A., Rochon, P., Pézolet, M., Audet, P., Brown, D., and To, S., Macromolecules, 27, 2580 (1994).Google Scholar