Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:04:30.959Z Has data issue: false hasContentIssue false

In-Situ Observation Of Aln Formation During Nitridation Of Sapphire By Ultrahigh Vacuum Transmission Electron Microscopy

Published online by Cambridge University Press:  10 February 2011

M. Yeadon
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
M. T. Marshall
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
F. Hamdani
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
S. Pekin
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
H. Morkoc
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
J. M. Gibson
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
Get access

Abstract

Using a novel ultrahigh vacuum transmission electron microscope (UHV TEM) with insitu molecular beam epitaxy capability we have studied the nitridation of (0001) sapphire upon exposure to ammonia. Atomically flat sapphire surfaces for the experiments were obtained by high temperature annealing. Subsequent exposure to ammonia flow at 950°C led to the successful synthesis of epitaxial AIN; the films were characterized in-situ using TEM. Complimentary ex-situ atomic force microscopy (AFM) was also performed in order to characterize the surface morphology before and after nitridation.

The experiments indicate that AIN grows by a 3D island growth mechanism. Electron diffraction patterns suggest an abrupt AIN/sapphire interface with no evidence of the formation of Al–O–N compounds. The rate limiting step in the nitridation reaction appears to be the diffusion of nitrogen and oxygen species between the free surface of the growing AIN film and the reaction interface. It is inferred from kinetic measurements that diffusion of these species occurs along the boundaries between coalescing AIN islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

On secondment from the Institute of Materials Research and Engineering, National University of Singapore, Singapore 119260

References

[1] Mohammad, S. N., Salvador, A. and Morkoç, H., Proc. IEEE 83, 1306 (1995).Google Scholar
[2] Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, Shin-ichi, Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
[3] Aktas, O., Kim, W., Fan, Z.-F., Botchkarev, A. E., Salvador, A., Mohammad, S. N., Sverdlov, B., Morkoç, H., Electron. Lett. 31, 1389 (1995).Google Scholar
[4] Akasaki, I, Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J Crystal Growth 98, 209 (1989).Google Scholar
[5] Moustakas, T. D., Molnar, R. J., Menon, G. and Eddy, C. R. Jr., Mat. Res. Soc. Symp. Proc. 242, 427 (1992).Google Scholar
[6] Moustakas, T. D., Lei, T. and Molnar, R. J., Phys. B 185, 36 (1993).Google Scholar
[7] Kuznia, J. N., Khan, M. A., and Olson, D. T. and Kaplan, R. and Freitas, J., J. Appl. Phys. 73, 4700 (1993).Google Scholar
[8] Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
[9] Kawakami, H., Sakurai, K., Tsubouchi, K. and Mikoshiba, N., Jpn. J. Appl. Phys. 27, L161 (1988).Google Scholar
[10] Hwang, C.-Y., Schurman, M. J., and Mayo, W. E., Li, Y. and Lu, Y., Liu, H., Salagaj, T., and Stall, R. A., J. Vac. Sci. Technol. A 13, 672, (1995).Google Scholar
[11] Grandjean, N., Massies, J. and Leroux, M., Appl. Phys. Lett. 69, 2071 (1996).Google Scholar
[12] Uchida, K., Watanabe, A., Yano, F., Koguchi, M., Tanaka, T., and Minagawa, S., J. Appl. Phys. 79, 3487 (1996).Google Scholar
[13] Masu, K., Nakamura, Y., Yamazaki, T., Shibata, T., Takahashi, M. and Tsubouchi, K., Jpn. J. Appl. Phys. 34 Pt. 2, (1995).Google Scholar
[14] Marshall, M. T., Tong, X., Yeadon, M. and Gibson, J. M., Rev. Sci. Instr., 1998, in print.Google Scholar
[15] Norton, M. G. and Carter, C. B., Scanning Microsc. 6, 385 (1992).Google Scholar
[16] Norton, M. G. and Carter, C. B., J. Cryst. Growth 110, 641 (1991).Google Scholar
[17] McCauley, J. W., Krishnan, K. M., Rai, R. S., Thomas, G., Zangvill, A., Doser, R. W. and Corbin, N. D., Mats. Sci. Res. 21 ‘Ceramic Microstructures 86’, Eds: Pask, J. A. and Evans, A. G., 577 (1986).Google Scholar
[18] Sternitzke, M. and Muller, G., J. Am. Ceram. Soc. 77, 737 (1994).Google Scholar
[19] Solomon, H., Robinson, D. and Dieckmann, R.. J. Am. Ceram. Soc. 77, 2841 (1994).Google Scholar
[20] Yeadon, M., Marshall, M. T., Hamdani, F., Pekin, S., Morkoc, H. and Gibson, J.M., J.Appl. Phys., 1998, in print.Google Scholar