Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T03:24:46.054Z Has data issue: false hasContentIssue false

In-situ Growth and Growth Kinetics of Epitaxial (100) CoSi2 Layer on (100) Si by Reactive Chemical Vapor Deposition

Published online by Cambridge University Press:  14 March 2011

Hwa Sung Rhee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Koosung-dong, Yusung-gu, Taejon 305-701, Korea
Heui Seung Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Koosung-dong, Yusung-gu, Taejon 305-701, Korea
Jong Ho Park
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Koosung-dong, Yusung-gu, Taejon 305-701, Korea
Byung Tae Ahn
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Koosung-dong, Yusung-gu, Taejon 305-701, Korea
Get access

Abstract

Uniform epitaxial CoSi2 layers have been grown in situ on a (100) Si substrate at temperatures near 600 °C by reactive chemical-vapor deposition of cyclopentadienyl dicarbonyl cobalt, Co(η5-C5H5)(CO)2. The growth kinetics of an epitaxial CoSi2 layer on a Si (100) substrate was investigated at temperatures ranging from 575 to 650 °C. In initial deposition stage, platelike discrete CoSi2 spikes were nucleated along the <111> directions in (100) Si substrate with a twinned structure. The discrete CoSi2 plates with both {111} and (100) planes grew into an epitaxial layer with a flat interface on (100) Si. For epitaxial CoSi2 growth on (100) Si, the activation energy of the parabolic growth was found to be 2.80 eV. The growth rate seems to be controlled by the diffusion of Co through the CoSi2 layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maex, K., Mater. Sci. Eng., R. 11, 53, (1993).Google Scholar
2. White, A. E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett. 50, 95, (1987).10.1063/1.97830Google Scholar
3. Reader, A. H., Duchateau, J. P. W. B., and Crombeen, J. E., Semicond. Sci. Techonol. 8, 1204, (1993).10.1088/0268-1242/8/7/004Google Scholar
4. Dass, M. L. A., Fraser, D. B., and Wei, C. S., Appl. Phys. Lett. 58, 1308, (1991).10.1063/1.104345Google Scholar
5. Rhee, H. S. and Ahn, B. T., Appl. Phys. Lett. 74, 3176, (1999).10.1063/1.124067Google Scholar
6. Hirano, T. and Kaise, M., J. Appl. Phys. 68, 627, (1990).10.1063/1.346790Google Scholar
7. Hensel, J. C., Tung, R. T., Poate, J. M., and Unterwald, F. C., Appl. Phys. Lett. 44, 913, (1984).10.1063/1.94932Google Scholar
8. Scheuch, V., Boigtlander, B., and Bonzel, H. P., Surf. Sci. 372, 71, (1996).10.1016/S0039-6028(96)01132-6Google Scholar
9. Rhee, H. S., Ahn, B. T., and Sohn, D. K., J. Appl. Phys. 86, 3452, (1999).10.1063/1.371228Google Scholar
10. Appelbaum, A., Knoell, R. V., and Murarka, S. P., J. Appl. Phys. 57, 1880, (1985).10.1063/1.334419Google Scholar
11. Barge, T., Gas, P., and d'Heurle, F. M., J. Mater. Res. 10, 1134, (1995).10.1557/JMR.1995.1134Google Scholar