Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:38:20.584Z Has data issue: false hasContentIssue false

In-situ Control of Nitrogen Content and the Effect on PL Properties of SiNx Films Grown by Ion Beam Sputter Deposition

Published online by Cambridge University Press:  15 March 2011

Kyung Joong Kim
Affiliation:
Nano Surface Group, Korea Research Institute of Standards and Science (KRISS), P.O.Box 102, Yusong, Taejon 305-600, Korea
Dae Won Moon
Affiliation:
Nano Surface Group, Korea Research Institute of Standards and Science (KRISS), P.O.Box 102, Yusong, Taejon 305-600, [email protected]
Moon-Seung Yang
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST) 373-1 Kusung-dong, Yusong-gu, Taejon, Korea
Jung H. Shin
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST) 373-1 Kusung-dong, Yusong-gu, Taejon, Korea
Get access

Abstract

Strong visible luminescence was observed in silicon nitride (SiNx) thin films grown by ion beam sputter deposition (IBSD) using nitrogen ion as a sputtering source. Nitrogen content (x) of the films was controlled by variation of the sputtering N2 ion flux and analysed by in-situ x-ray photoelectron spectroscopy (XPS). Relative sensitivity factors of Si and N peaks could be calculated by Rutherford backscattering spectroscopy. The photoluminescence (PL) spectra of the post-annealed samples showed visible luminescence at blue-green region. PL energy showed a blue-shift due to quantum confinement with decreased excess Si and intensity showed a maximum value near x = 1.1. These PL properties are well correlated with the formation of Si nanocrystals (nc-Si). We found that there is a great increase of PL energy of SiNx thin films compared with SiOx thin films, which indicate that the surface state of Si nanocrystals plays an important role to increase PL energy and intensity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lu, Z. H., Lockwood, D. J. and Baribeau, J. M., Nature 378, 258 (1995)Google Scholar
2. Vinciguerra, V., Franzo, G., Priolo, F., Iacona, F. and Spinella, C., J. Appl. Phys. 87, 8165 (2000)Google Scholar
3. Zacharias, M., Heitmann, J., Scholz, R., kahler, U., Schmidt, M., and Blasing, J., Appl. Phys. Lett. 80, 661 (2002).Google Scholar
4. Garrido, B., Lopez, M., Gonzalez, O., Perez-Rodriguez, A., Morante, J. R. and Bonafos, C., Appl. Phys. Lett. 77, 3143 (2000).Google Scholar
5. Priolo, F., Franzo, G., Pacifici, D., Vinciguerra, V., Iacona, F. and Irrera, A., J. Appl. Phys. 89, 264 (2001)Google Scholar
6. Yoshida, K., Umezu, I., Sakamoto, N., Inada, M. and Sugimura, A., J. Appl. Phys. 92, 5936 (2002)Google Scholar
7. Molinari, M., Rinnert, H., and Vergnat, M., Appl. Phys. Lett. 82, 3877 (2003).Google Scholar
8. Kahler, U. and Hofmeister, H., Appl. Phys. A 74, 13 (2002).Google Scholar
9. Park, N. M., Choi, C. J., Seong, T. Y., and Park, S. J., Phys. Rev. Lett. 86, 1355 (2001)Google Scholar
10. Kato, H., Kashio, N., Ohki, Y., Seol, K.S., and Noma, T., J. Appl. Phys. 93, 239 (2003)Google Scholar
11. Wang, Y. Q., Wang, Y. G., Cao, L., and Cao, Z. X., Appl. Phys. Lett. 83, 3474 (2003)Google Scholar
12. Saha, C., Das, S., Ray, S. K. and Lahiri, S. K., J. Appl. Phys. 83, 4472 (1998).Google Scholar
13. Lambrinos, M. F., Valizadeh, R. and Colligon, J. S., J. Vac. Sci. Technol. B16, 589 (1998).Google Scholar
14. Dautremont-Smith, W. C. and Feldman, L. C., J. Vac. Sci. Technol. A3, 873 (1985).Google Scholar
15. Iacona, F., Franzo, G., and Spinella, C., J. Appl. Phys. 87, 1295 (2002)Google Scholar