Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:16:49.789Z Has data issue: false hasContentIssue false

Insertion Reactions in Materials with Water-Containing Galleries

Published online by Cambridge University Press:  25 February 2011

R. A. Huggins
Affiliation:
Center for Solar Energy and Hydrogen Research (ZSW), Helmholtz Str. 8, 7900 Ulm, Germany
M. Wohlfahrt-Mehrens
Affiliation:
Center for Solar Energy and Hydrogen Research (ZSW), Helmholtz Str. 8, 7900 Ulm, Germany
L. JÖrissen
Affiliation:
Center for Solar Energy and Hydrogen Research (ZSW), Helmholtz Str. 8, 7900 Ulm, Germany
Get access

Abstract

The microscopic mechanism of the operation of the well - known “nickel” electrode involves the transport of protons through an outer layer of the Ni(OH)2 phase to the two-phase Ni(OH)2/NiOOH boundary, where the electrochemical reaction takes place. This boundary is displaced as the reaction proceeds. When it reaches the outer surface so that the NiOOH phase is in contact with the electrolyte, an additional process takes place, resulting in the rapid evolution of gaseous oxygen. Interpretation of the available thermodynamic data in terms of ternary phase equilibria shows that the equilibrium electrode potential should be more positive than that for the decomposition of water, as is experimentally observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bode, H., Dehmelt, K. and Witte, J., Electrochim. Acta 11, 1079, (1966).Google Scholar
2. Oliva, P. et al. , J. Power Sources 8, 229, (1982).Google Scholar
3. Faure, C. et al. , J. Power Sources 35, 249, (1991).Google Scholar
4. Faure, C., Delmas, C. and Willmann, P., J. Power Sources 35, 263, (1991).Google Scholar
5. Faure, C., C. Delmas and Fouassier, M., J. Power Sources 35, 279, (1991).Google Scholar
6. Delmas, C., in Solid State Ionics II, Nazri, G.-A., Shriver, D. F., Huggins, R. A. and Balkanski, M., Ed., Materials Research Society (1991), p. 335.Google Scholar
7. Delmas, C. et al. , Solid State Ionics 28–30, 1132, (1988).Google Scholar
8. Briggs, G. W. D., Jones, E. and Wynne-Jones, W. F. K., Trans. Faraday Soc. 51, 394, (1955).Google Scholar
9. Kober, F. P., J. Electrochem. Soc. 112, 1064, (1965).Google Scholar
10. Conway, B. E. and Bourgault, P. L., Can. J. Chem. 37, 292, (1959).Google Scholar
11. Kuchinskii, E. M. and Erschler, B. V., J. Phys. Chem. (USSR) 14, 985, (1940).Google Scholar
12. Briggs, G. W. D. and Fleischmann, M., Trans. Faraday Soc. 67, 2397, (1971)Google Scholar
13. Barnard, R., Randell, C. F. and Tye, F. L., J. Appl. Electrochem. 10, 109, (1980).Google Scholar
14. Crocker, R. W. and Muller, R. H., Presented at the Meeting of the Electrochemical Society, Toronto, (1992).Google Scholar
15. Huggins, R. A., in Fast Ion Transport in Solids, Vashishta, P. P., Mundy, J. N. and Shenoy, G. K., Ed., North-Holland (1979), p. 53.Google Scholar
16. Weppner, W. and Huggins, R. A., Solid State Ionics 1, 3, (1980).Google Scholar
17. Godshall, N. A., Raistrick, I. D. and Huggins, R. A., Mat. Res. Bull. 15, 561, (1980).Google Scholar
18. Godshall, N. A., Raistrick, I. D. and Huggins, R. A., J. Electrochem. Soc. 131, 543, (1984).Google Scholar
19. Balej, J. and Divisek, J., Presented at the Meeting of the Bunsengesellschaft, Wien (1992).Google Scholar