Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:26:15.263Z Has data issue: false hasContentIssue false

Inorganic-Organic Sol-Gel Processing of Semiconductor Quantum Dots and some Preliminary Self-Diffraction Studies on CdS-PbS

Published online by Cambridge University Press:  15 February 2011

L. Spanhel
Affiliation:
Institut für Neue Materialien, W-6600 Saarbrücken, FRG
H. Schmidt
Affiliation:
Institut für Neue Materialien, W-6600 Saarbrücken, FRG
A. Uhrig
Affiliation:
Fachbereich Physik, Universitdt Kaiserslautern, W-6750 Kaiserslautern, FRG
C. Klingshirn
Affiliation:
Fachbereich Physik, Universitdt Kaiserslautern, W-6750 Kaiserslautern, FRG
Get access

Abstract

Films and monoliths, containing clusters (sizes < 5 nm) of the binary semiconductor CdS and sandwiched CdS-PbS, were prepared via multifunctional inorganic-organic sol-gel processing. As a sulfur source, hexamethyldisilylthiane was employed. In precursor sols, the metal sulfide clusters are carrying functionalized silanes acting as stabilizing centers as well as inorganic and organic network formers. Hydrolysis and condensation produces an inorganic network yielding viscous liquids useful to prepare optically transparent films or monoliths. The final organic cross-linking at T < 100°C results in materials of variable spectral response, thickness and optical density. In preliminar degenerate four-wave mixing experiments, self-diffraction from laser-induced gratings was observed on unsupported 200 μm thick CdS-PbS doped monoliths. The maximum first order grating efficiency, measured at different wavelengths between 490 and 520 nm, was 0.5 · 10−3 and the corresponding calculated effective third order susceptibility was of the order of 10−9 esu.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ekimov, A. I., Onushchenko, A. A., Pis'ma Zh. Eksp. Teor. Fiz. 34 (6), 363 (1981).Google Scholar
2. Schmitt-Rink, S., Miller, D. A. B., Chemla, D. S., Phys Rev. B 35, 8113, (1987).Google Scholar
3. Jain, R. K., Lind, R. C., J. Opt. Soc. Am. 73, 647 (1983).CrossRefGoogle Scholar
4. Brus, L. E., Appl. Phys. A 53, 465 (1991).CrossRefGoogle Scholar
5. Wang, Y., Acc. Chem. Res. 24, 133 (1991).CrossRefGoogle Scholar
6. Spanhel, L., Anderson, M. A., J. Am. Chem. Soc. 112, 2278 (1990); 113 2826, (1991).Google Scholar
7. Nogami, M., Watabe, M., Nagasaka, K., in Sol-Gel Optics, SPIE 1328. 119 (1990).CrossRefGoogle Scholar
8. Kawaguchi, H., Miyakawa, T., Tan-no, N., Kobayashi, Y., Kurokawa, Y., Japan. J. Appl. Phys. 30, L 280 (1991).Google Scholar
9. Nass, R., Schmidt, H., Arpac, E., Sol-Gel Optics, SPIE 1328, 258 (1990).Google Scholar
10. Kasemann, R., Brück, S., Schmidt, H., Proceedings Eurogel Conference 1991, in pressGoogle Scholar
11. Schmidt, H., Krug, H., Kasemann, R., Tiefensee, F., in Submolecular Glass Chemistry and Physics, SPIE 1590, 36 (1991).Google Scholar
12. Spanhel, L., Arpac, E., Schmidt, H., J. Non-Cryst. Solids (1992), in pressGoogle Scholar
13. Li, C., Chung, Y. J., Mackenzie, J. D., Knobbe, E. T., presented at Am. Cer. Soc. Optical Materials Symposium, Oct. 21–23, 1991, Washington, USAGoogle Scholar
14. Reisfeld, R. in Optical Properties of Excited States in Solids, edited by Bartolo, B. D. (Proc. NATO ASI 1991 Plenum) in pressGoogle Scholar
15. Eichler, H.J., Giinter, P., Pohl, D.W., Laser Induced Dynamic Gratings, Springer Series in Optical Sciences (Springer, Berlin, Heidelberg 1986).Google Scholar
16. Uhrig, A., Wörner, A., Klingshirn, C., Banyai, L., Gaponenko, S., Lacis, I., Neuroth, N., Speit, B., Remitz, K., J. Crystal Growth 117, 598 (1992).CrossRefGoogle Scholar