Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T07:45:56.258Z Has data issue: false hasContentIssue false

Inorganic Quantum Dot - Organic Dendrimer Nanocomposite Materials

Published online by Cambridge University Press:  10 February 2011

K. Sooklal
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, [email protected]
J. Huang
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, [email protected]
C. J. Murphy
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, [email protected]
L. Hanus
Affiliation:
Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208
H. J. Ploehn
Affiliation:
Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208
Get access

Abstract

Semiconductor quantum dots are of great current interest for their optical properties. We have developed a method for preparing CdS quantum dots in commercially available PAMAM Starburst dendrimers. The resulting CdS-dendrimer nanocomposites are exceptionally stable and emit brightly in the blue. The size of the dendrimer (its “generation”) has a surprisingly small effect on the optical properties of the resulting nanocomposites. The dot-dendrimer nanocomposites can be captured in a silica sol-gel matrix to yield a stable, bright blue-emitting glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bar, G., Rubin, S., Cutts, R. W., Taylor, T. N. and Zawodsinski, T. A. Jr., Langmuir 12, 1172 (1996).10.1021/la950662fGoogle Scholar
2. Zhao, M., Sun, L. and Crooks, R. M., J. Am. Chem. Soc. 120, 4877 (1998).10.1021/ja980438nGoogle Scholar
3. Balogh, L. and Tomalia, D. A., J. Am. Chem. Soc. 120, 7355 (1998).10.1021/ja980861wGoogle Scholar
4. Sooklal, K., Hanus, L., Ploehn, H. J. and Murphy, C. J., Adv. Mater. 10, 1083 (1998).10.1002/(SICI)1521-4095(199810)10:14<1083::AID-ADMA1083>3.0.CO;2-B3.0.CO;2-B>Google Scholar
5. Esumi, K., Suzuki, A., Aihara, N., Usui, K. and Torigoe, K., Langmuir 14, 3157 (1998).10.1021/la980162xGoogle Scholar
6. Zhao, M. and Crooks, R. M., Adv. Mater. 11, 217 (1999).Google Scholar
7. Garcia, M. E., Baker, L. A. and Crooks, R. M., Anal. Chem. 71, 256 (1999).10.1021/ac980588gGoogle Scholar
8. Brus, L. E., J. Chem. Phys. 79, 5566 (1983).10.1063/1.445676Google Scholar
9. Brus, L. E., J. Chem. Phys. 80, 4403 (1984).10.1063/1.447218Google Scholar
10. Bawendi, M. G., Carroll, P. J., Wilson, W. L. and Brus, L. E., J. Chem. Phys. 96, 946 (1992).10.1063/1.462114Google Scholar
11. Beecroft, L. L. and Ober, C. K., Chem. Mater. 9, 1302 (1997).10.1021/cm960441aGoogle Scholar