No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
In the context of the present Spanish ‘once-through’ nuclear fuel cycle, the need arises to complete the geological repository reference concept with a spent fuel canister final design. One of the main issues in its design is selecting the inner material to be placed inside the canister, between the steel walls and the spent fuel assemblies. The primary purpose of this material will be to avoid the possibility of a criticality event once the canister walls have been finally breached by corrosion and the spent fuel is flooded with groundwater. That is an important role because the increase in heat generation from such an event would act against spent fuel stability and compromise bentonite barrier functions, negatively affecting overall repository performance. To prevent this possibility a detailed set of requirements for a material to fulfil this role in the repository environment have been devised and presented in this paper. With these requirements in view, eight potentially interesting candidates were selected and evaluated: cast iron or steel, borosilicate glass, spinel, depleted uranium, dehydrated zeolites, haematite, phosphates, and olivine. Among these, the first four materials or material families are found promising for this application. In addition, other relevant non-performance-related aspects of candidate materials, which could help on decision making, are also considered and evaluated.