Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:35:17.975Z Has data issue: false hasContentIssue false

InN Nanostructures: Strain and Morphology

Published online by Cambridge University Press:  01 February 2011

Francois Demangeot
Affiliation:
Laboratoire de Physique des Solides IRSAMC, UMR 5477 CNRS, 118 Route de Narbonne Universite Paul Sabatier, 31062 Toulouse Cedex 04, France
Jean Frandon
Affiliation:
Laboratoire de Physique des Solides IRSAMC, UMR 5477 CNRS, 118 Route de Narbonne Universite Paul Sabatier, 31062 Toulouse Cedex 04, France
Claire Pinquier
Affiliation:
Laboratoire de Physique des Solides IRSAMC, UMR 5477 CNRS, 118 Route de Narbonne Universite Paul Sabatier, 31062 Toulouse Cedex 04, France
Michel Caumont
Affiliation:
Laboratoire de Physique des Solides IRSAMC, UMR 5477 CNRS, 118 Route de Narbonne Universite Paul Sabatier, 31062 Toulouse Cedex 04, France
Olivier Briot
Affiliation:
Groupe d'Etudes des Semiconducteurs, UMR 5650 CNRS, Place Eugene Bataillon, Universite Montpellier II, 34095 Montpellier, France
Benedicte Maleyre
Affiliation:
Groupe d'Etudes des Semiconducteurs, UMR 5650 CNRS, Place Eugene Bataillon, Universite Montpellier II, 34095 Montpellier, France
Sandra Clur-Ruffenach
Affiliation:
Groupe d'Etudes des Semiconducteurs, UMR 5650 CNRS, Place Eugene Bataillon, Universite Montpellier II, 34095 Montpellier, France
Bernard Gil
Affiliation:
Groupe d'Etudes des Semiconducteurs, UMR 5650 CNRS, Place Eugene Bataillon, Universite Montpellier II, 34095 Montpellier, France
Get access

Abstract

We presented an experimental work on InN nanostructures grown on a GaN buffer layer deposited on sapphire (0001) by Metal Organic Vapor Phase Epitaxy. InN islands of controlled sizes were fabricated by using specific growth conditions and taking advantage of self-organization that results from Stranski-Krastanov growth mode. Then nanometric islands as small as 25 nm were characterized by using atomic force microscopy (AFM) and micro-Raman spectroscopy. AFM measurements revealed that the current shape of islands correspond to truncated hexagons. In-plane residual strain field was deduced from the E2 phonon frequency shift in micro-Raman spectra recorded on islands of various sizes. Careful analysis of these data made clear that the key parameter in determining the strain magnitude was the height of the islands: this was not surprising, keeping in mind that the shape was roughly independent of the size. Nevertheless, the dislocation density was believed to increase as function of the island thickness, leading to various degrees of strained relaxation, as probed by the present micro-Raman study. This conclusion was reinforced by the strain variation on the facets of single islands with respect to its value at the centre.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W., Haller, E. E., Lu, H. and Schaff, W. J., Appl. Phys. Lett. 80, 4741 (2002).Google Scholar
2. Davydov, V. Yu., Lochikhin, A. A., Emtsev, V. V., Ivanov, S. V., Vekshin, V. V., Bechstedt, F., Furthmüller, J., Harima, H., Mudryi, A. V., Hashimoto, A., Aderhold, J., Graul, J. and Haller, E. E., Phys. Stat. Sol. (b) 230, R4 (2002).Google Scholar
3. Briot, O., Maleyre, B., Ruffenach-Clur, S., Gil, B., Pinquier, C., Demangeot, F. and Frandon, J., submitted (2003).Google Scholar
4. Feuillet, G., Daudin, B., Widmann, F., Rouvière, J. L. and Arléry, M., J. Cryst. Growth 189, 142 (1998).Google Scholar
5. Briot, O., Maleyre, B., Ruffenach, S., to be published in Appl. Phys. Lett. 83, 2817 (2003).Google Scholar
6. Kurimoto, E., Harima, H., Hashimoto, A. and Yamamoto, A., Phys. Stat. Sol. (b), 228, 1(2001).Google Scholar
7. Yu Davydov, V., Emtsev, V. V., Goncharuk, I. N., Smirnov, A. N., Petrikov, V. D., Mamutin, V. V., Vekshin, V. A. and Ivanov, S. V., Appl. Phys. Lett. 75, 3297 (1999).Google Scholar
8. Tabata, A., Silveira, E., Leite, J. R., Trentin, R., Scolfaro, L. M. R., Lemos, V., Frey, T., As, D. J., Schikora, D. and Lischka, K., Phys. Stat. Sol. (b) 216, 769 (1999).Google Scholar
9. Kaczmarczyk, G., Kaschner, A., Reich, S., Hoffmann, A., Thomsen, C., As, D. J., Lima, A. P., Schikora, D., Lischka, K., Averbeck, R. and Riechert, H., Appl. Phys. Lett. 76, 2122 (2000).Google Scholar
10. Demangeot, F., Frandon, J., Renucci, M. A., Briot, O., Gil, B. and Aulombard, R. L., Sol. Stat. Com. 100, 207 (1996).Google Scholar
11. Gleize, J., Frandon, J., Renucci, M. A., Bellet-Amalric, E., Daudin, B., J. Appl. Phys. 93, 2065 (2003).Google Scholar
12. Sarua, A., Kuball, M. and Van Nostrand, J. E., Appl. Phys. Lett. 81, 1426 (2002).Google Scholar
13. Demangeot, F., Frandon, J., Pinquier, C., Briot, O., Maleyre, B., Ruffenach, S. and Gil, B., Phys. Rev. B, 68 (18), 245803 (2003).Google Scholar
14. Kegel, I., Metzger, T. H., Fratzl, P., Peisl, J., Lorke, A., Garcia, J. M. and Petroff, P. M., Europhys. Lett. 45, 222 (1999).Google Scholar
15. Lee, I. J., Kim, J. W., Hwang, Y.-H. and Kim, H.-K., J. Appl. Phys. 92, 5814 (2002).Google Scholar