Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T04:17:30.264Z Has data issue: false hasContentIssue false

Ink-jet printing of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymers

Published online by Cambridge University Press:  01 February 2011

Shihai Zhang
Affiliation:
[email protected], Penn State University, Electrical Engineering, 187 Material Research Lab, University Park, PA, 16802, United States, 814-8639558, 814-8637846
Ziqi Liang
Affiliation:
Qing Wang
Affiliation:
Q.M. Zhang*
Affiliation:
*
a)Corresponding author: Professor Q. M. Zhang, Penn State University, 187 MRL Building, University Park, PA 16802, Email: [email protected]; Phone: 814-8638994; Fax: 814-8637846
Get access

Abstract

Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymers are well known for their excellent ferroelectric and other related properties and they are being exploited as active components in many microdevices such as ferroelectric memory cells and infrared sensors. Compared with conventional photolithography, ink-jet printing provides a low-cost versatile method to fabricate polymer micro-devices. In this paper, the influences of driving waveform at the jet head, ink concentration, substrate chemistry, and the solvent quality on the printed P(VDF-TrFE) dots were investigated. It was found that well-defined P(VDF-TrFE) micro-dots with diameter of less than 30 mm and thickness of ∼1 μm can be printed by using a mixed solvent system, consisting of a good solvent with relatively low boiling temperature and a poor solvent with high boiling temperature, on perfluorinated hydrophobic gold surface. The printed P(VDF-TrFE) micro-dots possess crystallinity comparable to that of the bulk sample, suggesting that ink-jet printing technology is a promising micro-fabrication technology for manufacturing P(VDF-TrFE)-based micro-sensors and other micro-devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Current address: GE Global Research Center, One Research Circle, K1-2S86D, Niskayuna, NY 12309. [email protected]

References

1. Lovinger, A. J., Science 220, 1115 (1983).Google Scholar
2. Zhang, Q. M., Bharti, V., Zhao, X., Science 280, 2101(1998).Google Scholar
3. Ferroelectric Polymers; Nalwa, H., Ed.; Marcel Dekker: New York, 1995.Google Scholar
4. Xia, Y., Whitesides, G. M., Angew. Chem. Int. Ed. 37, 550 (1998).Google Scholar
5. Calvert, P., Chem. Mater. 13, 3299 (2001).Google Scholar
6. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E. P., Science 290, 2123 (2000).Google Scholar
7. De Gans, B. J., Duineveld, P. C., Schubert, U. S., Adv. Mater. 16, 203 (2004).Google Scholar
8. Wang, J. Z., Zheng, Z. H., Li, H. W., Huck, W. T. S., Sirringhaus, H., Nat. Mater. 3, 171 (2004).Google Scholar
9. Pardo, D. A., Jabbour, G. E., Peyghambarian, N., Adv. Mater. 12, 1249 (2000).Google Scholar
10. Kawase, T., Sirringhaus, H., Friend, R. H., Shimoda, T., Adv. Mater. 13, 1601 (2001).Google Scholar
12. An Introduction to Fluid Dynamics; Batchelor, G. K., Cambridge University Press: UK, 1967.Google Scholar
13. Deegan, R. D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S. R., Witten, T. A., Nature 389, 827 (1997).Google Scholar
14. Classical Electrodynamics; 2nd Ed., Jackson, J. D., Wiley: New York, 1975.Google Scholar
15. Deegan, R. D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S. R., Witten, T. A., Phys. Rev. E. 62, 756 (2000).Google Scholar
16. de Gans, B.-J., Schubert, U. S., Langmuir 20, 7789 (2004).Google Scholar
17. Lyon, P. J., Carter, J. C., Bright, C. J., Cacheiro, M., WO Patent 02/069119 A1, 2002.Google Scholar
18. Kanchanasopa, M., Manias, E., Runt, J., Biomacromolecules 4, 1203 (2003).Google Scholar
19. Zhang, Q. M., Xu, H. S., Fang, F., Cheng, Z. Y., Xia, F., You, H., J. Appl. Phys. 89, 2613 (2001).Google Scholar
20. Xia, F., Razavi, B., Xu, H. S., Cheng, Z. Y., Zhang, Q. M., J. Appl. Phys. 92, 3111 (2002).Google Scholar