Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T02:25:56.010Z Has data issue: false hasContentIssue false

Ink-Jet Printed Cu/CuxO/Ag ReRAM Memory Devices Fabricated on Flexible Substrate

Published online by Cambridge University Press:  14 October 2014

Simin Zou
Affiliation:
Deparment of Electrical and Computer Engineering, Auburn University, 200 Broun Hall, Auburn University, AL 36849, U.S.A.
Michael C. Hamilton*
Affiliation:
Deparment of Electrical and Computer Engineering, Auburn University, 200 Broun Hall, Auburn University, AL 36849, U.S.A.
*
*Corresponding Author E-mail: [email protected], Tel: 334-844-1879
Get access

Abstract

Recently, flexible electronics is attracting growing attention due to its various properties such as lightness and flexibility, which cannot be replaced by rigid electronics. In this study, we investigate flexible ink-jet printed Cu/CuxO/Ag capacitor-like structure that exhibits bipolar resistive switching behavior under direct current voltage sweeps. A vaccum-free and low temperature process is used to fabricate this ReRAM memory device, which allows straightforward fabrication and a structure for characterization of the possible use of CuxO as an insulating layer in these devices. Our device displays a resistive switching ratio greater than 30 between the high resistance and low resistance state at room temperature. The devices exhibit metallic behavior in the low resistance state and a semiconductor behavior is found in the initial and high resistance states as observed in temperature dependent resistance measurements. The resistive switching mechanism of the fabricated structures is explained by the formation and rupture of conductive filament paths.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shin, S., Kim, K. and Kang, S., Trans. Nanotechnol, 10, 266 (2011).CrossRefGoogle Scholar
Kim, K. H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T., Srinivasa, N. and Lu, W., Nano lett., 12, 389 (2011).Google Scholar
Gergel-Hackett, N., Hamadani, B., Dunlap, B., Suehle, J., Richter, C., Hacker, C. and Gundlach, D., IEEE Electron Device Lett. 30, 706 (2009).CrossRefGoogle Scholar
Chen, Y. S., et al. ., in IEEE International Electron Devices Meeting (IEDM), pp.14 (2009).Google Scholar
Verbakel, F., Meskers, S. C., Janssen, R. A., Gomes, H. L., Colle, M., Buchel, M. and de Leeuw, D. M., Appl. Phy. Lett. 91, 192103 (2007).Google Scholar
Szot, K., Speier, W., Bihlmayer, G. and Waser, R., Nat. Mater. 5, pp. 312320 (2006).CrossRefGoogle Scholar
Guan, W., Liu, M., Long, S., Liu, Q. and Wang, W., Appl. Phys. Lett. 93, 223506 (2008).CrossRefGoogle Scholar
Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y. and Tokura, Y., Appl. Phys. Lett. 86, 012107 (2005).CrossRefGoogle Scholar
Williams, R., Spectr, IEEE 45, 12, pp. 2835 (2008).CrossRefGoogle Scholar
Liu, Q., Guan, W., Long, S., Jia, R., Liu, M. and Chen, J., Appl. Phys. Lett. 92, 012117 (2008).CrossRefGoogle Scholar
Zou, S., Xu, P., Hamilton, M. C., Electron. Lett. 49, 13 (2013).Google Scholar
Zou, S., Hamilton, M. C., in IEEE Electronic Components and Technology Conference (ECTC), pp. 441446 (2014) .Google Scholar
Parretta, A., Jayaraj, M. K., Di Nocera, A., Loreti, S., Quercia, L. and Agati, A., Phys. status solidi (a), 155, 399 (1996).CrossRefGoogle Scholar
Lin, K. L., Hou, T. H., Shieh, J., Lin, J. H., Chou, C. T. and Lee, Y. J., J. Appl Phys, 109, 084104 (2011).CrossRefGoogle Scholar
Lee, C. B., Kang, B. S., et al. . Appl. Phys. Lett., 93(4), 042115 (2008).CrossRefGoogle Scholar