Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T09:43:16.698Z Has data issue: false hasContentIssue false

Injection of Polarized Spins and Anti-Localization Caused by Slight Doping of Heavy Impurities into One End of Carbon Nanotubes

Published online by Cambridge University Press:  15 March 2011

Junji Haruyama
Affiliation:
Aoyama Gakuin University, 6-16-1 Chitosedai, Setagaya, Tokyo 157-8572, JAPAN
Izumi Takesue
Affiliation:
Aoyama Gakuin University, 6-16-1 Chitosedai, Setagaya, Tokyo 157-8572, JAPAN
Tetsuro Hasegawa
Affiliation:
Aoyama Gakuin University, 6-16-1 Chitosedai, Setagaya, Tokyo 157-8572, JAPAN
Get access

Abstract

Electrode atoms are slightly diffused, with only about 5% volume-ratio, into the top end of multi-walled carbon nanotubes (MWNTs), standing in nano-pores of porous Alumina membranes. Diffusion of light-mass materials (carbon and aluminum) leads to weak localization in the Altshuler-Aronov-Spivak (AAS) oscillations, which is qualitatively consistent with previous works on MWNTs. In contrast, we find that diffusion of heavy materials (gold and platinum) changes this weak localization into an anti-localization in the MWNT bulk. This effect is only observable when electrons are injected through the diffusion region, and undergo a φ-phase shift in their electron waves, caused by polarized injection of spin-flipped electrons due to spin-orbit interaction in the diffusion-region of the MWNT bulk.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kazaoui, S. et al., Phys.Rev.B 60, 13339 (1999); R.S.Lee et al., Nature 388, 255 (1997)Google Scholar
2. Langer, L., Bayot, V., et al., Phys.Rev.Lett. 76, 479 (1996)Google Scholar
3. Song, S.N., Wang, X.K., et al., Phys.Rev.Lett. 72, 697 (1994)Google Scholar
4. Bayot, V., Piraux, L., et al., Phys.Rev.B 40, 3514 (1989-II)Google Scholar
5. Bachtold, A., Strunk, C., et al., Nature 397, 673 (1999)Google Scholar
6. Fujiwara, A., Tomiyama, K., Suematsu, H., et al., Phys.Rev.B 60, 13492 (1999-I)Google Scholar
7. Haruyama, J., Takesue, I., Hasegawa, T., and Sato, Y., Phys.Rev.B 63, 073406 (2001)Google Scholar
8. Haruyama, J., Takesue, I., and Sato, Y., Appl.Phys.Lett. 77, 2891 (2000)Google Scholar
9. Haruyama, J., Takesue, I., and Sato, Y., in “Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics” edited by Kulik, I. and Ellialtioglu, R. et, 145, NATO science series C559 (Plenum, New York, 2000)Google Scholar
10. Ebbesen, T.W., Lezec, H.J., Hiura, H., et al., Nature 382, 54 (1996)Google Scholar
11. Tsukagoshi, K., Alphenaar, B.W., et al., Nature 401, 572 (1999)Google Scholar
12. Anderson, P.W., Phys.Rev. 109, 1492 (1958)Google Scholar
13. Abrahams, E., Anderson, P.W., et al., Phys.Rev.Lett. 42, 673 (1979)Google Scholar
14. Haesendonck, C. van, et al., Phys.Rev.B 25, 5090 (1982).Google Scholar
15. Altshuler, B.L., Aronov, A.G., et al., JETP Lett. 35, 588 (1982)Google Scholar
16. Sharvin, D.Y and Sharvin, Y.V., Sov.Phys.JETP Lett. 34, 272 (1981)Google Scholar
17. Hikami, S., Larkin, A.I., and Nagaoka, Y., Prog.Theor.Phys. 63, 707 (1980)Google Scholar
18. Komori, F., Kobayashi, S., and Sasaki, W., J.Phys.Soc.Jpn. 51, 3136 (1982)Google Scholar
19. Bergman, G., Phys.Rev.Lett. 48, 1046 (1982)Google Scholar
20. Papadopoulos, C., et al., Phys.Rev.Lett 85, 3476 (2000)Google Scholar