Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T09:42:07.293Z Has data issue: false hasContentIssue false

Injection Electroluminescence from Thin Film p-i-n Structures made from Nanocrystalline Hydrogenated Silicon

Published online by Cambridge University Press:  15 February 2011

A. A. Andreev
Affiliation:
A.F. Ioffe Physical-Technical Institute, 194021, St. Petersburg, Russia
B. Y. Averbouch
Affiliation:
A.F. Ioffe Physical-Technical Institute, 194021, St. Petersburg, Russia
P. Mavlyanov
Affiliation:
A.F. Ioffe Physical-Technical Institute, 194021, St. Petersburg, Russia
S. B. Aldabergenova
Affiliation:
Universität Eriangen-Nümberg, Institut für Werkstoffwissenschaften, MikroCharakterisierung, D-91058 Erlangen, Germany
M. Albrecht
Affiliation:
Universität Eriangen-Nümberg, Institut für Werkstoffwissenschaften, MikroCharakterisierung, D-91058 Erlangen, Germany
D. Stenkamp
Affiliation:
Universität Eriangen-Nümberg, Institut für Werkstoffwissenschaften, MikroCharakterisierung, D-91058 Erlangen, Germany
H. P. Strunk
Affiliation:
Universität Eriangen-Nümberg, Institut für Werkstoffwissenschaften, MikroCharakterisierung, D-91058 Erlangen, Germany
Get access

Abstract

Nanocrystalline silicon films are prepared by plasma enhanced chemical vapour deposition of silane under the conditions of high hydrogen dilution (3:100). The film structure consists of nanoclusters 0.8 to 5 nm in size (volume fraction 30%) embedded in an amorphous matrix. The Taue gap of the amorphous matrix is 1.95 to 2.05 eV depending on deposition parameter. These films are characterized as regards photoluminescence (PL) and, prepared to p-i-n structures, electroluminescence (EL). The PL and EL agree in (i) luminescence peak at 1.9 eV, i.e. small Stokes shift, (ii) almost no temperature dependence between 77 K and 293 K, (iii) fast kinetics with time constant of a few 10−8 s. These data can be understood in terms of quantum confinement in Si nanocrystallites smaller than around 2 nm. The EL in addition exhibits a luminescence band extending up to 3 eV, which can be interpreted by interband transition due the hot carriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Canham, L.T., Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
[2]Calcott, P.D., Nash, K.J., Canham, L.T., Kane, M.J. and Brumhead, D., J. Phys.: Condens. Matter 5, L91 (1993).Google Scholar
[3]Hybertsen, M.S., Phys. Rev. Letters, 72, 1514 (1993).Google Scholar
[4]Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. B, 48, 7951 (1993).Google Scholar
[5]Ashida, Y., Fukuda, N., Solar Energy Materials and Solar Cells, 34, 291(1994).Google Scholar
[7]Kittel, Ch., Einführung in die Festkörperphysik. 6 ed., (Oldenbourg, München, 1983), p.361.Google Scholar
[8]Papaconstantopoulos, D.A., NEconomou, E., Phys. Rev. B, 24, 7233 (1981)Google Scholar
[9]Ley, L. in The Physics of Hydrogenated Silicon II. edited by Joannopoulos, J.D. and Lucovsky (Springer-Verlag, 1984), p. 130.Google Scholar
[10]Landau, L.D. and Lifshitz, E.N., Quantum Mechanics.( Nauka, Moscow, 1974, third edition), p. 139.Google Scholar
[11]Haecker, W., Phys. Stat. Sol. (a), 25, 301 (1974).Google Scholar
[12]Wolff, P.J., Phys. Chem. Soc. 16, 184 (1960).Google Scholar