Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:44:02.388Z Has data issue: false hasContentIssue false

Initiation and Decomposition of Tetrazole Containing Green Energetic Materials

Published online by Cambridge University Press:  11 January 2012

Nicholas W. Piekiel
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, U.S.A.
Richard E. Cavicchi
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899
Michael R. Zachariah
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, U.S.A. Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899
Get access

Abstract

A T-Jump/Time-of-Flight Mass Spectrometer (T-Jump/TOFMS) is used to probe the decomposition of several aminotetrazole containing energetic materials under very high heating rates of 105-106 K/s. Subtle differences between materials in functional group placement and anion composition allow for further understanding of the decomposition pathway of the tetrazole structure and various anions. Two decomposition pathways for the tetrazole ring are observed, which result in the primary formation of HN3 or N2. Further analysis is performed using a rapid-heating μ-DSC device, which revealed lower activation energies than previously reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ma, G.X., et al. ., Thermochimica Acta, 2004. 423(1-2): p. 137141.Google Scholar
2. Lesnikovich, A.I., et al. ., Thermochimica Acta, 2002. 388(1-2): p. 233251.Google Scholar
3. Paul, K.W., Hurley, M.M., and Irikura, K.K., Journal of Physical Chemistry A, 2009. 113(11): p. 24832490.Google Scholar
4. Chowdhury, A., Thynell, S.T., and Lin, P., Thermochimica Acta, 2009. 485(1-2): p. 113.Google Scholar
5. Klapotke, T.M. and Stierstorfer, J., European Journal of Inorganic Chemistry, 2008(26): p. 40554062.Google Scholar
6. Galvez-Ruiz, J.C., et al. ., Inorganic Chemistry, 2005. 44(12): p. 42374253.Google Scholar
7. Brill, T.B. and Ramanathan, H., Combustion and Flame, 2000. 122(1-2): p. 165171.Google Scholar
8. Kiselev, V.G. and Gritsan, N.P., Journal of Physical Chemistry A, 2009. 113(15): p. 36773684.Google Scholar
9. Fischer, G., et al. ., Thermochimica Acta, 2005. 437(1-2): p. 168178.Google Scholar
10. Zhou, L., et al. ., Rapid Communications in Mass Spectrometry, 2009. 23(1): p. 194202.Google Scholar
11. Certain commercial instruments or materials are identified to adequately specify the experimental procedure. In no case does such identification imply endorsement by the National Institute of Standards and Technology. This statement applies to all instruments mentioned in this article .Google Scholar
12. Klapotke, T.M. and Stierstorfer, J., Dalton Transactions, 2009(4): p. 643653.Google Scholar
13. Klapotke, T.M., et al. ., Journal of the American Chemical Society, 2005. 127(7): p. 20322033.Google Scholar
14. Cavicchi, R.E., et al. ., Sensors and Actuators B-Chemical, 2004. 97(1): p. 2230.Google Scholar
15. Linn, S.H. and Ng, C.Y., Journal of Chemical Physics, 1981. 75(10): p. 49214926.Google Scholar
16. Illies, A.J., Journal of Physical Chemistry, 1988. 92(10): p. 28892896.Google Scholar
17. Coe, J.V., et al. ., Journal of Chemical Physics, 1987. 87(8): p. 43024309.Google Scholar
18. Papai, I. and Stirling, A., Chemical Physics Letters, 1996. 253(1-2): p. 196200.Google Scholar
19. Snis, A. and Panas, I., Chemical Physics Letters, 1999. 305(3-4): p. 285292.Google Scholar
20. Torchia, J.W., Sullivan, K.O., and Sunderlin, L.S., Journal of Physical Chemistry A, 1999. 103(50): p. 1110911114.Google Scholar
21. Alijah, A. and Kryachko, E.S., Journal of Molecular Structure, 2007. 844: p. 193199.Google Scholar
22. Yang, R., Thakre, P., and Yang, V., Combustion Explosion and Shock Waves, 2005. 41(6): p. 657679.Google Scholar
23. Rahm, M. and Brinck, T., Journal of Physical Chemistry A. 114(8): p. 28452854.Google Scholar
24. Vyazovkin, S. and Wight, C.A., Journal of Physical Chemistry A, 1997. 101(39): p. 72177221.Google Scholar
25. Kissinger, H.E., Analytical Chemistry, 1957. 29(11): p. 17021706.Google Scholar