Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:33:40.075Z Has data issue: false hasContentIssue false

Initially Separated Reaction-Diffusion Systems

Published online by Cambridge University Press:  15 February 2011

Haim Taitelbaum
Affiliation:
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
Baruch Vilensky
Affiliation:
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
Yong-Eun Lee Koo
Affiliation:
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
Andrew Yen
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
Anna Lin
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
Raoul Kopelman
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

Characteristics of the A + B → C reaction-diffusion system with initially separated components are studied theoretically and experimentally. When the reaction is slow, the two species will mix before reacting. This leads to a series of crossovers from a rich initial behavior to an asymptotic time behavior. The crossovers depend on the system parameters, such as the diffusion coefficients and initial densities of the two species. In this paper we review our recent studies on this system. We elaborate on a theoretical study of momentum effects, and then focus on theoretical explanations of two experimental phenomena: 1) Non-universal and non-monotonic motion of the reaction front center. The latter occurs when one of the reactants has larger diffusion coefficient but smaller initial density. 2) Existence of more than one front. This occurs when two different transformations of the same reactant (on one of the sides of the system), react with the reactant on the other side with a different reaction constant - the majority slowly, but the minority much faster.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gáfi, L. and Rácz, Z., Phys. Rev. A, 38, 3151 (1988).Google Scholar
[2] Koo, Y.E., Li, L. and Kopelman, R., Mol. Cryst. Liq. Cryst., 183, 187 (1990).Google Scholar
[3] Koo, Y-E.L. and Kopelman, R., J. Stat. Phys., 65, 893 (1991).Google Scholar
[4] Jiang, Z. and Ebner, C., Phys. Rev. A, 42, 7483 (1990).Google Scholar
[5] Taitelbaum, H., Havlin, S., Kiefer, J.E., Trus, B. and Weiss, G.H., J. Stat. Phys., 65, 873 (1991).Google Scholar
[6] Taitelbaum, H., Koo, Y-E.L., Havlin, S., Kopelman, R. and Weiss, G.H., Phys. Rev. A, 46, 2151 (1992).Google Scholar
[7] Chopard, B. and Droz, M., Europhys. Lett., 15, 459 (1991).Google Scholar
[8] Cornell, S., Droz, M. and Chopard, B., Phys. Rev. A, 44, 4826 (1991).Google Scholar
[9] Cornell, S., Droz, M. and Chopard, B., Physica A, 188, 322 (1992).Google Scholar
[10] Araujo, M., Havlin, S., Larralde, H. and Stanley, H.E., Phys. Rev. Lett., 68, 1791 (1992).Google Scholar
[11] Ben-Naim, E. and Redner, S., J. Phys. A, 25, L575 (1992).Google Scholar
[12] Larralde, H., Araujo, M., Havlin, S. and Stanley, H.E., Phys. Rev. A, 46, 855 (1992).Google Scholar
[13] Larralde, H., Araujo, M., Havlin, S. and Stanley, H.E., Phys. Rev. A, 46, R6121 (1992).Google Scholar
[14] Araujo, M., Larralde, H., Havlin, S. and Stanley, H.E., Physica A, 191, 168 (1992).Google Scholar
[15] Havlin, S., Araujo, M., Larralde, H., Stanley, H.E. and Trunfio, P., Physica A, 191, 143 (1992).Google Scholar
[16] Havlin, S., Araujo, M., Larralde, H., Shehter, A., Stanley, H.E., Fractals, 1, 405 (1993).Google Scholar
[17] Chopard, B., Droz, M., Karapiperis, T. and Ricz, Z., Phys. Rev. E, 47, R40 (1993).Google Scholar
[18] Cornell, S. and Droz, M., Phys. Rev. Lett., 70, 3824 (1993).Google Scholar
[19] Araujo, M., Larralde, H., Havlin, S. and Stanley, H.E., Phys. Rev. Lett., 71, 3592 (1993).Google Scholar
[20] Taitelbaum, H., Physica A, 200, 155 (1993).Google Scholar
[21] Koo, Y-E., Kopelman, R., Yen, A. and Lin, A., Mat. Res. Soc. Symp. Proc., 290, 273 (1993).Google Scholar
[22] Vilensky, B., Havlin, S., Taitelbaum, H. and Weiss, G.H., J. Phys. Chem., 98, 7325 (1994).Google Scholar
[23] Taitelbaum, H., in “Diffusion Processes”, Pekalski, A., ed., Lecture Notes in Physics, vol.438, (Springer, Berlin, 1994), pp. 7789.Google Scholar
[24] Lin, A., Yen, A., Koo, Y-E. and Kopelman, R., Mat. Res. Soc. Symp. Proc., 366, this symposium.Google Scholar
[25] Yen, A. and Kopelman, R., Mat. Res. Soc. Symp. Proc., 366, this symposium.Google Scholar
[26] Araujo, M., Mat. Res. Soc. Symp. Proc., 366, this symposium.Google Scholar
[27] Řehák, B. and Körbl, J., Collection Czechoslov. Chem. Commun., 25, 797 (1960).Google Scholar