Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:25:36.079Z Has data issue: false hasContentIssue false

Initial Oxynitridation of a Si(001)-2×1 Surface by NO

Published online by Cambridge University Press:  10 February 2011

Noriyuki Miyata
Affiliation:
Joint Research Center for Atom Technology, Angstrom Technology Partnership (JRCAT-ATP) Tsukuba, 305-0046, Japan
Heiji Watanabe
Affiliation:
Joint Research Center for Atom Technology, Angstrom Technology Partnership (JRCAT-ATP) Tsukuba, 305-0046, Japan
Masakazu Ichikawa
Affiliation:
Joint Research Center for Atom Technology, Angstrom Technology Partnership (JRCAT-ATP) Tsukuba, 305-0046, Japan
Get access

Abstract

We have investigated the initial oxynitridation of an atomically flat Si(001)-2×l surface by NO. We found that appropriate oxynitridation conditions, in which oxide decomposition does not occur, are required to suppress the roughness of the NO-reacted Si surface. Under these conditions, we investigated the growth behavior and chemical structure. The first oxynitridation, in which NO reacts with the first Si layer on the Si(001)-2×l surface, takes place in a layer-bylayer manner caused by two-dimensional nucleation. However, further oxynitridation for the second Si layer proceeds in a three-dimensional manner in which the atomic-scale roughness at the oxynitride/Si interface increases. In addition, under our oxynitridation conditions, N is incorporated as N ≡ Si3, even though the oxynitride is ultrathin.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Fundamental Research Laboratories, NEC Corporation, Tsukuba, 305-8501, Japan

References

1.Hwang, H., Ting, W., Maiti, B., Kwong, D.L., and Lee, J., Appl. Phys. Lett. 57, 1010 (1990).Google Scholar
2.Car, E.C. and Buhrman, R.A., Appl. Phys. Lett. 63, 54 (1993).Google Scholar
3.Han, L.K., Wristers, D., Yan, J., Bhat, M., and Kwong, D.L., IEEE Electron Device Lett. 16, 319 (1995).Google Scholar
4.Hori, T., Iwasaki, H., Yoshioka, Y., and Sato, M., Appl. Phys. Lett. 52, 736 (1988).Google Scholar
5.Bhat, M. et al. , IEEE, Electron Device Lett, 15, 421 (1994).Google Scholar
6.Ohmi, T., Miyashita, M., Itano, M., Imaoke, T., and Kawanabe, I., IEEE Trans. Electron Devices, 39, 537 (1992).Google Scholar
7.Niwa, M., Okada, K., and Sinclair, R., Appl. Surf. Sci. 100/101, 425 (1996).Google Scholar
8.Fujita, S., Watanabe, H., Maruno, S., and Ichikawa, M., Appl. Phys. Lett. 71, 885 (1997), H. Watanabe et al., Phys. Rev. Lett. 80, 345 (1998).Google Scholar
9.Miyata, N., Watanabe, H., and Ichikawa, M., Phys. Rev. B 58, 13670 (1998).Google Scholar
10.Watanabe, H. and Ichikawa, M., Rev. Sci. Instrum. 67, 4185 (1996).Google Scholar
11.Watanabe, H., Baba, T., and Ichikawa, M., Appl. Phys. Lett. 74, 3284 (1999).Google Scholar
12.Sasse, A.G.B.M. and Silfhout, A. van, Phys. Rev. B 40, 1773 (1989).Google Scholar
13.Ono, Y., Tabe, M., and Kageshima, H., Phys. Rev. B 48, 14291 (1993).Google Scholar
14.Wiggins, M.D., Baird, R.J., and Wynblatt, P., J. Vac. Sci. Technol. 18, 965 (1981).Google Scholar
15.Himpsel, F.J. et al. , Phys. Rev. B 38, 6084 (1988).Google Scholar
16.Hansch, W., Nakajima, A., and Yokoyama, S., Appl. Phys. Lett. 75, 1535 (1999).Google Scholar
17.Ishizaka, A., Iwata, S., and Kamigaki, Y., Surf. Sci. 84, 355 (1979).Google Scholar
18.Kamath, A., Kwong, D.L., Sun, Y.M., Blass, P.M., Whaley, S., and White, J.M., Appl. Phys. Lett. 70, 63 (1997).Google Scholar
19.Hedge, R.I., Tobin, P.J., Reid, K.G., Maiti, B., and Ajuria, S.A., Appl. Phys. Lett. 66, 2882 (1995).Google Scholar
20.Lu, H.C., Gusev, E.P., Gustafsson, T., Garfunkel, E., Green, M.L., Brasen, D., and Feldman, L.C., Appl. Phys. Lett. 69, 2713 (1996).Google Scholar
21.Miyata, N., Watanabe, H., and Ichikawa, M., Appl. Phys. Lett. submitted.Google Scholar
22.Avouris, P., Bozso, F., and Hamers, R.J., J. Vac. Sci. Technol. B 5, 1387 (1987).Google Scholar
23.Taguchi, Y., Fujisawa, M., Kuwahara, Y., Onchi, M., and Nishijima, M., Surf. Sci. 217, IA13 (1989).Google Scholar