Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-10-01T11:26:25.332Z Has data issue: false hasContentIssue false

Initial Growth of Microcrystalline Silicon on Atomically Flat Hetero-Substrate

Published online by Cambridge University Press:  15 February 2011

K. Saitoh
Affiliation:
Central Research Institute Mitsui Toatsu Chemicals, Inc., 1190 Kasama-cho, Sakae-ku, Yokohama 247, Japan
M. Kondo
Affiliation:
Thin Film Silicon Solar Cells Super Lab., Electrotechnical Laboratory Umezono, Tsukuba-shi, Ibaraki, 305, Japan
A. Matsuda
Affiliation:
Thin Film Silicon Solar Cells Super Lab., Electrotechnical Laboratory Umezono, Tsukuba-shi, Ibaraki, 305, Japan
Get access

Abstract

Initial growth of microcrystalline silicon μ-Si:H) deposited on an atomically flat GaAs (001) wafer using a RF glow-discharge decomposition of hydrogen diluted monosilane gas mixture has been studied by means of atomic force microscope (AFM), Auger electron spectroscopy (AES), and cross-sectional transmitssion electron microscopy (XTEM).

It is shown that the initial growth of μc-Si:H deposited at a substrate temperature of 50∼250°C consists of four successive stages, i.e., (1) a layer-by-layer growth of a-Si:H up to d ∼5 Å, (2) island formation of a-Si:H, (3) the coalescence of the islands and the nucleation of microcrystallite at d∼ 10–40 Å depending on the growth temperature, and (4) a rapid roughening with microcrystalline growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Arata Selvan, J.A., Pellaton Vaucher, N., Hof, Ch., Fischer, D., Keppner, H., Shah, A., Ufert, K.-D., Giannoules, P. and Koehler, J., Mat. Res. Soc. Symp. Proc. 420, (1996) pp. 314 Google Scholar
2. Yang, Y.-N., Luo, Y.S. and Weaver, J.H., Phys. Rev. B, 45, (1992), p. 3606 Google Scholar
3. Eaglesham, D.J., J. Appl. Phys. 77, (1995), pp. 3597 Google Scholar
4. Ikuta, K., Toyoshima, Y., Yamasaki, S., Matsuda, A. and Tanaka, K., Mat. Res. Soc. Symp. Proc. 420, (1996) pp. 413424 Google Scholar
5. Matsuda, A., Kumagai, K. and Tanaka, K., Jpn. J. Appl. Phys. Vol. 22, No. 1, (1983), PP.L34L36 Google Scholar
6. Kondo, M., Toyoshima, Y., Matsuda, A. and Ikuta, K., J. Appl. Phys. 80, (1996), pp. 6061 Google Scholar
7. Matsuda, A. and Tanaka, K., J. Appl. Phys. 60, (1986), pp. 2351 Google Scholar
8. Seah, M. P. and Dench, W. A., Surface and Interface Analysis, Vol. 1, No.1, (1979), p2 Google Scholar
9. Meakin, P., Phys. Rep. 235, (1993), p. 189 Google Scholar