Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:38:14.904Z Has data issue: false hasContentIssue false

Initial Growth Behavior of Ultra-Thin c-Axis-Oriented Epitaxial SrBi2Ta2O9 films on SrTuO3

Published online by Cambridge University Press:  26 February 2011

Kenji Takahashi
Affiliation:
[email protected], Tokyo Institute of Technology, J2-43, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
Muneyasu Suzuki
Affiliation:
Mamoru Yoshimoto
Affiliation:
Hiroshi Funakubo
Affiliation:
Get access

Abstract

c-axis-oriented epitaxial SrBi2Ta2O9 ultra-thin films were grown by pulse-gas-introduced metalorganic chemical vapor deposition (pulsed-MOCVD) on (100)SrTiO3 single crystal substrates with atomic scale step structure and their growth behavior was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Minimum growth unit was found to be “ghalf-unit-cell” of SrBi2Ta2O9. Height of steps and width of terraces observed at SrBi2Ta2O9 film surface were in good agreement with those at SrTiO3 substrate surface. This shape transfer was induced by lattice displacement of SrBi2Ta2O9 along c-direction formed at atomic step on SrTiO3 substrate. In-plane growth of half-unit-cell SrBi2Ta2O9 2D-islands striding across the step walls was observed. It was considered to be a special phenomenon for c-axis-oriented films of layer-structured compounds due to their large crystal anisotropy and/or several times larger half-unit-cell height than single step one of SrTiO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Setter, N. and Waser, R., Acta Mater. 48, 151 (2000).Google Scholar
2 Padmini, P., Taylor, T. R., Lefevre, M. J., Nagra, A. S., York, R. A. and Speck, J. S., Appl. Phys. Lett. 75, 3186 (1999).Google Scholar
3 Hwang, C. S., Park, S. O., Kang, C. S., Kang, H.K., Ahn, S. T. and Lee, M. Y., Jpn. J. Appl. Phys. 34, 5178 (1995).Google Scholar
4 Ezhilvalavan, S. and Tseng, T.Y., Mater. Chem. Phys. 65, 227 (2000).Google Scholar
5 Sinnamon, L. J., Bowman, R. M. and Gregg, J. M., Appl. Phys. Lett. 78, 1724 (2001).Google Scholar
6 Hwang, C. S., J. Appl. Phys. 92, 432 (2002).Google Scholar
7 Takemura, K., Sakuma, T. and Miyasaka, Y., Appl. Phys. Lett. 64, 2967 (1994).Google Scholar
8 Choi, Y. C. and Lee, B. S., Mater. Chem. Phys. 61, 124 (1999).Google Scholar
9 Kojima, T., Sakashita, Y., Watanabe, T., Kato, K. and Fuankubo, H., Mat. Res. Soc. Symp. Proc. 748, U15.2.1 (2003).Google Scholar
10 Kojima, T., Watanabe, T., Funakubo, H., Sakashita, Y. and Oikawa, T., Ceram. Eng. and Sci. Proc. 24, 57 (2003).Google Scholar
11 Takahashi, K., Suzuki, M., Kojima, T., Watanabe, T., Sakashita, Y., Kato, K., Sakata, O. and Funakubo, H., submitted for publication.Google Scholar
12 Takahashi, K., Suzuki, M., Oikawa, T., Kojima, T., Watanabe, T. and Funakubo, H., Chemical Vapor Deposition in press.Google Scholar
13 Takahashi, K., Suzuki, M., Okamoto, S. and Funakubo, H., Ceram. Eng. and Sci. Proc. in press.Google Scholar
14 Yoshimoto, M., Maeda, T., Shimozono, K., Koinuma, H., Shinohara, M., Ishiyama, O., Ohtani, F., Appl. Phys. Lett. 65, 3197 (1994).Google Scholar
15 Kawayama, I., Kotani, K. and Tonouchi, M., Thin Solid Films 464–465, 160 (2004).Google Scholar
16 Yanagita, T., Tabata, H. and Kawai, T., Jpn. J. Appl. Phys. 36, 5917 (1997).Google Scholar
17 Hamada, M., Tabata, H. and Kawai, T., Jpn. J. Appl. Phys. 37, 5174 (1998).Google Scholar
18 Kawayama, I., Kotani, K. and Tonouchi, M., Thin Solid Films 464–465, 160 (2004).Google Scholar
19 Schwoebel, R. L. and Shipsey, E. J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
20 Ehrlich, G. and Hudda, F. G., J. Chem. Phys. 44, 1039 (1966).Google Scholar