Published online by Cambridge University Press: 01 January 1992
When immobilizing into borosilicate glass the radionuclides in the caustic high-level radioactive wastes stored in the USA, the soluble fission product Cs-137 has to be removed from supernates of the wastes. In the current processes zeolites or an organic precipitant will be used to remove the Cs. These are then treated further and mixed with the radioactive sludges and vitrified into a borosilicate glass. This paper describes the vitrification of a mixture resulting from using a new process to remove Cs from the caustic supernate. A resorcinol based organic ion exchange resin is used. This resin was then mixed with sludge and frit and vitrified. Using an organic ion exchange resin rather than zeolite or the organic precipitant has certain advantages. For example, use of the zeolite increases the amount of glass to be made and use of the organic precipitant produces benzene as a secondary waste stream. Results in the paper indicate that a mixture of the resin, sludge and frit can be successfully vitrified in a joule-heated, slurry fed melter. However, when resin is present in the feed, the glass becomes less durable due to the increased amount of Fe(II) caused by reduction of Fe(III) in the melt. Based on the durabilities of other waste glasses, this glass is still suitable as a canistered wasteform.