Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T16:48:43.376Z Has data issue: false hasContentIssue false

InGaN Laser Diode Degradation. Surface and Bulk Processes

Published online by Cambridge University Press:  31 January 2011

Piotr Perlin
Affiliation:
[email protected], Institute of High Pressure Physics, Warsaw, Poland
Łucja Marona
Affiliation:
[email protected], Institute of High Pressure Physics, warsaw, Poland
Przemek Wisniewski
Affiliation:
[email protected], Institute of High Pressure Physics, warsaw, Poland
Mike Leszczynski
Affiliation:
[email protected], Institute of High Pressure Physics, warsaw, Poland
Pawel Prystawko
Affiliation:
[email protected], Institute of High Pressure Physics, warsaw, Poland
Michał Boćkowski
Affiliation:
[email protected], Institute of High Pressure Physics, warsaw, Poland
Robert Czernecki
Affiliation:
[email protected], Institute of High Pressure Physics, warsaw, Poland
Irina Makarowa
Affiliation:
[email protected], TopGaN Ltd., Warsaw, Poland
Bogdan Kowalski
Affiliation:
[email protected], Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
Tadek Suski
Affiliation:
[email protected], Institute of High Pressure Physics, warsaw, Poland
Get access

Abstract

We discuss main degradation mechanisms present in nitride based laser diodes operating in 400-440 nm spectral range. We can clearly divide the aging processes into these occurring on the exposed facets of the device and into the bulk phenomena. Surface processes are predominantly connected with photochemical reactions on the laser mirrors and manifest by the formation of the carbon deposits. The nature of these photochemical reactions resembles very closely the mechanism known as Package Induced Failure observed previously in case of 980 nm laser diodes. Degradation involving bulk like effects is much less understood. The experimental results by other group are not sufficient for proposing an unambiguous model of the physical effects involved. In particular, it consists in observation related to dopants diffusion and recombination mechanisms. Magnesium diffusion from the p-type layers into the active layer was proposed as a possible degradation path. However, our study of SIMS profiles in the device subjected to over 8 000 h of electrical stress reveals no visible modification in the Mg profile. The same holds for the hydrogen spatial distribution thus substantially limiting candidates for the diffusion processes. Nevertheless, it seems that the diffusion mechanism is involved in bulk degradation. The claim is supported by two facts: well confirmed stability of the extended defects network in nitride emitters and characteristic square-root time-dependence of the degradation rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugitomo, Y., Kiyoku, H., Appl. Phys. Lett. 69, (26), 40564058, 1996 10.1063/1.117816Google Scholar
2. Nakamura, S., J. Mater. Res. 14, 2716 (1999)10.1557/JMR.1999.0365Google Scholar
3. Uchida, S., Takeya, M., Ikeda, S., Mizuno, T., Fujimoto, T., Matsumoto, O., Goto, S., Tojyo, T., Ikeda, M., IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, No. 5, 2003 10.1109/JSTQE.2003.820910Google Scholar
4. Tomiya, S., Goto, S., takeya, M., Ikeda, M., phys. Stat. sol. (a) 200 139 (2003)10.1002/pssa.200303322Google Scholar
5. Takeya, M., Hashizu, T., Ikeda, M., Proc. of SPIE 5738 p. 6371 (2005)10.1117/12.597099Google Scholar
6. Lee, S. N., Paek, H. S., Son, J. K., Kim, H., Kim, K. K., Ha, K. H., Nam, O. H., Park, Y., J. Electroceram. Published Online 10 April 2008 Google Scholar
7. Schoedl, T., Schwarz, U. T., Kummler, V., Furitsh, M., Leber, A., Miler, A., Lell, A., Harle, V., J. Appl. Phys. 97, 123102 (2005)10.1063/1.1929851Google Scholar
8. Kim, C. C., Choi, Y., Jang, Y. H., Kang, H. K., Joo, M., Noh, M. S., Proc. Of SPIE, vol. 6894 (2008)Google Scholar
9. Grzegory, I., J. Phys. Condens. Matter. 13, 1 (2001)10.1088/0953-8984/13/32/301Google Scholar
10. Lucznik, B., Pastuszka, B., Grzegory, I., Bokowski, M., Kamler, G., E. Litwin-Staszewska and Porowski, S., Journal of Crystal Growth, 281, 38 (2005)10.1016/j.jcrysgro.2005.03.041Google Scholar
11. Wisniewski, P. Czernecki, R. Prystawko, P., Maszkowicz, M., Leszczynski, M., Suski, T., Grzegory, I., Porowski, S., Marona, M., Swietlik, T., Perlin, P., Proc. SPIE, 6133, 168 (2006)Google Scholar
12. Ikeda, M., Mizuno, T., Takeya, M., Goto, S., Ikeda, S., Fujimoto, T., Ohfuji, Y., Hashizu, T., phys. Stat. sol. (c) 1, 1467 (2004)Google Scholar
13. Ryu, H. Y., Ha, K. H., Lee, S. N., Jang, T., Son, J. K., Paek, H. S., Sung, Y. J., Kim, H. K., Kim, K. S., Nam, O. H., Park, Y. J., Shin, J. I., IEEE Photonics Technology Letters, vol. 19, No. 21, 2007 Google Scholar
14. Perlin, P. et al. , APL in printGoogle Scholar
15. Sharps, J.A., Proceedings of the 27th Annual Boulder Damage Symposium on Laser-Induced Damage in Optical Materials, 1995, SPIE, Bellingham, 1996, p. 676 10.1117/12.240398Google Scholar
16. Parka, Jongwoo, Shinb, D.-S., Materials Chemistry and Physics 88, 410, (2004)10.1016/j.matchemphys.2004.08.012Google Scholar
17. Takeya, M., Mizuno, T., Sasaki, T., Ikeda, S., Fujimoto, T., Ohfuji, Y., Oikawa, K., Yabuki, Y., Uchida, S., Ikeda, M., phys. stat. sol (c), 0 2292, (2003)10.1002/pssc.200303324Google Scholar
18. Kneissl, M., Bour, D. P., Romano, L., Walle, Ch. G. Van de, Northrup, J. E., Wong, W. S., Treat, D. W., Teepe, M., Schmidt, T., App. Phys. Lett. 77, 1931, (2000)10.1063/1.1312860Google Scholar