Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T22:20:43.222Z Has data issue: false hasContentIssue false

InGaAs/AWAsSb Heterostructures Lattice-Matched to InP GRown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  28 February 2011

Y. Nakata
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-01, Japan
Y. Sugiyama
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-01, Japan
T. Inata
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-01, Japan
O. Ueda
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-01, Japan
S. Sasa
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-01, Japan
S. Muto
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-01, Japan
T. Fujii
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-01, Japan
Get access

Abstract

We have successfully grown InGaAs/AIAsSb quantum-well (QW) structures lattice-matched to InP by molecular beam epitaxy for the first time. We studied the band-edge discontinuity and the interface abruptness of these heterostructures. A cross-sectional lattice image of InGaAs/AlAsSb QWs taken along the [100] axis showed atomically smooth heterointerfaces. The photoluminescence (PL) peak energy of the 20-nm-thick InGaAs well (0.758 eV) was lower than that of InGaAs bulk (0.799 eV), indicating that the InGaAs/AlAsSb system has a staggered lineup. The conduction band-edge discontinuity, ΔEc, was evaluated to be 1.74 ± 0.04 eV, which was derived from parameter fitting to the 4.2 K PL peak energy shifts of QWs as a function of InGaAs well width between 2.1 nm and 20 nm. The corresponding valence band-edge discontinuity, ΔEv, was 0.07 ± 0.02 eV. We also fabricated a resonant tunneling barrier structure of InGaAs (4.4 nm)/AlAsSb (2.9 nm), and obtained a very high peak-to-valley current ratio of 15 at 300 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inata, T., Muto, S., Nakata, Y., Sasa, S., Fujii, T., and Hiyamizu, S., Jpn. J. Appl. Phys. 26, L1332 (1987).10.1143/JJAP.26.L1332Google Scholar
2. Tanoue, T. and Sakaki, H., Appl. Phys. Lett. 41,67(1982).10.1063/1.93331Google Scholar
3. Cherng, M. J., Stringfellow, G. B., and Cohen, R. M., Appl. Phys. Lett. 44. 677 (1984).10.1063/1.94874Google Scholar
4. Sakaki, H., Chang, L. L., Ludeke, R., Chang, Chin-An, Sai-Halasz, G. A., and Esaki, L., Appl. Phys. Lett. 1, 211 (1977)10.1063/1.89609Google Scholar
5. Klem, J., Huang, D., Morkog, H., Ihm, Y. E., and Otsuka, N., Appl. Phys. Lett. 5Q, 1364 (1987).10.1063/1.97857Google Scholar
6. Nakata, Y., Fujii, T., Sandhu, A., Sugiyama, Y., and Miyauchi, E., J. Crystal Growth 91,655 (1988).10.1016/0022-0248(88)90137-6Google Scholar
7. Fujii, T., Nakata, Y., Sugiyama, Y., Toda, Y., and Miyauchi, E., Electron. Lett. 24, 1211 (1988).Google Scholar
8. Sugiyama, Y., Fujii, T., Nakata, Y., Muto, S., and Miyauchi, E., J. Crystal Growth 5, 363 (1989).10.1016/0022-0248(89)90419-3Google Scholar
9. Nakata, Y., Sugiyama, Y., Ueda, O., Sasa, S., Fujii, T., and Miyauchi, E., Abstracts of the 9th Int. Conf. on Crystal Growth (ICCG-9), p. 30, to be published in J. Crystal Growth.Google Scholar
10. Herman, M. H., Ward, I. D., Butirill, S. E. Jr., and Francke, G. L., in Advances in Materials, Processing and Devices in III-V Compound Semiconductors, edited by Sadana, D. K., Eastman, L. E., and Dupuis, R. (Mater. Res. Soc. Proc. 144, Pittsburgh, PA 1989).Google Scholar
11. Turner, W. J. and Reese, W. E., Radiative Recombination in Semiconductors, (Dunod, Paris 1965), p. 59 Google Scholar
12. Vechen, J. A. Van and Bergstresser, T. K., Phys. Rev. B 1,3351 (1970).10.1103/PhysRevB.1.3351Google Scholar
13. Stringfellow, G. B., J. Electron. Mater. 10, 919 (1981).10.1007/BF02661008Google Scholar
14. Olego, D., Chang, T. Y., Dilberg, E., Caridi, E. A., and Pinczuk, A., Appl. Phys. Lett. 41,476 (1982).10.1063/1.93537Google Scholar
15. Inata, T., Muto, S., Nakata, Y., and Fujii, T., presented at the Sixteenth International Symposium on Gallium Arsenide and Related Compounds, Karuizawa, Japan, 1989 (unpublished).Google Scholar