Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:33:45.718Z Has data issue: false hasContentIssue false

Infrared Spectroscopy of Hydrogen in ZnO

Published online by Cambridge University Press:  17 March 2011

M.D. Mccluskey
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164-2814, U.S.A.
S.J. Jokela
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164-2814, U.S.A.
Get access

Abstract

Zinc oxide (ZnO) has shown great promise as a wide band gap semiconductor with optical, electronic, and mechanical applications. Recent first-principles calculations and experimental studies have shown that hydrogen acts as a shallow donor in ZnO, in contrast to hydrogen's usual role as a passivating impurity. The structures of such hydrogen complexes, however, have not been determined. To address this question, we performed vibrational spectroscopy on bulk, single-crystal ZnO samples annealed in hydrogen (H2) or deuterium (D2) gas. Using infrared (IR) spectroscopy, we have observed O-H and O-D stretch modes at 3326.3 cm−1 and 2470.3 cm−1 respectively, at a sample temperature of 14 K. These frequencies are in good agreement with the theoretical predictions for hydrogen and deuterium in an antibonding configuration, although the bond-centered configuration cannot be ruled out. The IR-active hydrogen complexes are unstable, however, with a dissocation barrier on the order of 1 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Molnar, R.J., in Semiconductors and Semimetals 57 (Academic Press, New York, 1999), p. 1.Google Scholar
2. Minami, T., MRS Bulletin 25 (8), 38 (2000).Google Scholar
3. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
4. Simpson, P.J., Tjossem, R., Hunt, A.W., Lynn, K.G., and Munné, V., Nucl. Instrum. Meth. A 505, 82 (2003).Google Scholar
5. Walle, C.G. Van de, Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
6. Thomas, D.G. and Lander, J.J., J. Chem. Phys. 25, 1136 (1956).Google Scholar
7. Mollwo, E., Z. Phys. 138, 478 (1954).Google Scholar
8. Cox, S.F.J., Davis, E.A., Cottrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilão, R.C., Duarte, J. Piroto, Campos, N. Ayres de, Weidinger, A., Lichti, R.L., and Irvine, S.J.C., Phys. Rev. Lett. 86, 2601 (2001).Google Scholar
9. Hoffman, D.M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J., and Baranov, P.G., Phys. Rev. Lett. 88, 045504 (2002).Google Scholar
10. McCluskey, M.D., Jokela, S.J., Zhuravlev, K.K., Simpson, P.J., and Lynn, K.G., Appl. Phys. Lett. 81, 3807 (2002).Google Scholar
11. Jokela, S.J., McCluskey, M.D., and Lynn, K.G., Physica B 340–342, 221 (2003).Google Scholar
12. Nickel, N.H. and Fleischer, K., Phys. Rev. Lett. 90, 197402 (2003).Google Scholar
13. Lavrov, E.V., Weber, J., Börrnert, F., Walle, C.G. Van de, Helbig, R., Phys. Rev. B 66, 165205 (2002).Google Scholar
14. Cermet Inc., 1019 Collier Rd., Suite C1, Atlanta, GA 30318.Google Scholar
15. Shi, G. Alvin, Saboktakin, M., Stavola, M., and Pearton, S.J. (unpublished).Google Scholar