Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:32:59.774Z Has data issue: false hasContentIssue false

Infra-Red Photodiodes in Hg1-xCdxTe Grown by OMVPE

Published online by Cambridge University Press:  25 February 2011

K.K. Parat
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180
N.R. Taskar
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180
H. Ehsani
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180
I.B. Bhat
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180
S.K. Ghandri
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180
Get access

Abstract

Hg1-xCdxTe layers, grown by the organometallic vapor phase epitaxy (OMVPE), are p-type with carrier concentrations around 4 × 1016/cm3 due to the Group II vacancies in them. Following a Hg saturated anneal at 220°C, these layers become n-type with carrier concentrations around 4 × 1014/cm3. In order to fabricate p-n junction diodes, Hg1-xCdxTe layers were grown with a 0.5–0.8 μm thick CdTe cap. By opening windows in this CdTe cap, the underlying Hg1-xCdxTe Te layer was annealed in a selective manner, thus forming planar p-n junctions. The CdTe cap, which is used as the diffusion barrier for Hg during the selective anneal, also served as the junction passivant for the photodiodes. Details of device fabrication and characterization are presented in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Willardson, R. K. and Beer, A. C., eds. Semiconductor and Semimetals, Vol. 18, Academic Press, New York (1981).Google Scholar
2. Kinch, M. A., Borrello, S. R., and Simmons, A., Infrared Phys., 17, 127 (1977).CrossRefGoogle Scholar
3. Specht, L. T., Hoke, W. E., Oguz, S., Lemonias, P. J., Kreismanis, V. G., and Korenstein, R., Appl. Phys. Lett., 48, 417 (1986).CrossRefGoogle Scholar
4. Lanir, M. and Riley, K. J., IEEE Trans. Elec. Dev., ED- 29, 274 (1982).CrossRefGoogle Scholar
5. Gertner, E. R., Shin, S. H., Edwall, D. D., Bubulac, L. O., Lo, D. S., and Tennant, W. E., Appl. Phys. Lett., 46, 851 (1985).CrossRefGoogle Scholar
6. Arias, J. M., Shin, S. H., Pasko, J. G., DeWames, R. E., and Gertner, E. R., J. Appl. Phys., 65, 1747 (1989).CrossRefGoogle Scholar
7. Rogalski, A., Infrared Phys., 28, 139 (1988).CrossRefGoogle Scholar
8. Ghandhi, S. K., Bhat, I. B., and Fardi, H., Appl. Phys. Lett., 52, 392 (1988).CrossRefGoogle Scholar
9. Ghandhi, S. K., Taskar, N. R., Parat, K. K., Terry, D., and Bhat, I. B., Appl. Phys. Lett., 53, 1641 (1988).CrossRefGoogle Scholar
10. Ghandhi, S. K., Taskar, N. R., Parat, K. K., and Bhat, I. B., Appl. Phys. Lett. (submitted).Google Scholar
11. Vydyanath, H. R. and Hiner, C. H.,J. Appl. Phys., 65, 3080 (1989).CrossRefGoogle Scholar
12. Jones, C. L., Quelch, M. J. T., Capper, P., and Gosney, J. J., J. Appl. Phys., 53, 9080 (1982).CrossRefGoogle Scholar
13. Takita, K., Murakami, K., Otake, H., Masuda, K., Seki, S., and Kudo, H., Appl. Phys. Lett., 44, 996 (1984).CrossRefGoogle Scholar
14. Parat, K. K., Ehsani, H., Bhat, I. B., and Ghandhi, S. K., J. Vac. Sci. Tech. (submitted).Google Scholar