Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:37:19.371Z Has data issue: false hasContentIssue false

Infrared Photoconductivity and Photoluminescence from InAs/Ga1–xInxSb Strained-Layer Superlattices

Published online by Cambridge University Press:  28 February 2011

R. H. Miles
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
D. H. Chow
Affiliation:
T. J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
T. C. Mcgill
Affiliation:
T. J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

We have examined spectrally resolved photoconductivity and photoluminescence from InAs/Ga1–xInxSb strained-layer superlattices, which have been proposed as infrared detectors in the 8-14 μm region. Our measurements indicate that the energy gaps of the strained–layer superlattices are substantially smaller than those of InAs/GaSb superlattices with similar layer thicknesses, in agreement with previous theoretical predictions. Measurements on InAs/Ga1–xInxSb superlattices with x=0 and 0.25 and layer thicknesses of 25 – 45 A indicate superlattice band gaps of 3 – 15 μm, in excellent agreement with gaps calculated by a two band k · p model. Our results demonstrate that far-infrared energy gaps are compatible with the thin layers necessary for strong optical absorption in type-IT superlattices, and suggest that InAs/Ga1–xInxSb superlattices are promising candidates for far-infrared detection.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, D. L. and Mailhiot, C., J. Appi. Phys. 62, 2545 (1987).Google Scholar
2. Mailhiot, C. and Smith, D. L., J. Vac. Sci. Technol. A 7, 445 (1989).10.1116/1.576201Google Scholar
3. Gualtieri, G. J., Schwartz, G. P., Nuzzo, R. G., Malik, R. J., and Walker, J. F., J. Appl. Phys. 61, 5337 (1987).10.1063/1.338270Google Scholar
4. Sai-Halasz, G. A., Chang, L. L., Welter, J.-M., Chang, C.-A., and Esaki, L., Solid State Commun. 27, 935 (1978).10.1016/0038-1098(78)91010-4Google Scholar
5. Chang, L. L., Kawai, N. J., Sai-Halasz, G. A., Ludeke, R., and Esaki, L., Appl. Phys. Lett. 35, 939 (1979).Google Scholar
6. Arch, D. K., Wicks, G., Tonaue, T., Staudeninann, J.-L., J. Appl. Phys. 58, 3933 (1985).Google Scholar
7. Chow, D. H., Miles, R. H., Soderström, J. R., and McGill, T. C., J. Vac. Sci. Technol. B, to be published.Google Scholar
8. Chow, D. H., Miles, R. H., Söderstrém, J. R., and McGill, T. C., Appl. Phys. Lett. 56, 1418 (1990).10.1063/1.102486Google Scholar
9. Baukus, J. P., Hunter, A. T., Marsh, O. J., Jones, C. E., Wu, G. Y., Hetzler, S. R., McGill, T. C., and Faurie, J.-P., J. Vac. Sci. Technol. A 4, 2110 (1986).Google Scholar
10. Voisin, P., Bastard, G., Silva, C. E. T. Goncalves da, Voos, M., Chang, L. L., and Esaki, L., Solid Stale Con-mnun. 39, 79 (1981).10.1016/0038-1098(81)91051-6Google Scholar
11. Petroff, P. M., Cibert, J., Gossard, A. C., Dolan, G. J., and Tu, C. W., J. Vac. Sci. Technol. B 5, 1204 (1987).10.1116/1.583712Google Scholar
12. Miles, R. H., Chow, D. H., Schulman, J. N., and McGill, T. C., submitted to Appl. Phys. Lett.Google Scholar