Article contents
Influences of Silicon and Phosphorus Contents and Cooling Rate on JIC Fracture Toughness of Ferritic Spheroidal Graphite Cast Iron
Published online by Cambridge University Press: 21 February 2011
Abstract
The influences of silicon and phosphorus contents and cooling rate on JIC fracture toughness of ferritic spheroidal graphite cast iron were investigated by 15mm thick compact tension test-pieces. The JIC values were measured by means of the R-curve method for most cases at 20°C, and by means of the maximum J value method for the cases at -100° C. The results obtained are summarized as follows. At 20WC, the specimens with silicon contents less than 3.2% showed the ductile Load-COD relations, but a specimen with 3.5%Si showed a brittle Load-COD relation and the JIC decreased greatly. Increasing phosphorus content between 0.006% and 0.26% made the JIC value decrease gradually and made the slope of the R-curve decrease greatly. Difference in cooling rate produced differences in graphite nodule diameters and ferrite grain sizes. At 20°C, the larger the specimen's average graphite nodule diameter was, the larger the JIC value was. At -100° C, the Jic values of all the specimens tested decreased largely, and the influences of these factors became very different from those at 20° C.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1985
References
REFERENCES
- 1
- Cited by