Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:21:47.419Z Has data issue: false hasContentIssue false

Influence of Zinc on the Formation of Granules of Calcium Pyrophosphate

Published online by Cambridge University Press:  17 March 2011

Ombretta Masala
Affiliation:
Department of Chemistry and Manchester Materials Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom, E-mail:, [email protected]; [email protected]
Paul O'Brien
Affiliation:
Department of Chemistry and Manchester Materials Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom, E-mail:, [email protected]; [email protected]
Get access

Abstract

Accumulation of metals in inorganic granules is very common in invertebrates. The formation of metal deposits in both intra- and extracellular sites can be seen as a process for the detoxification of heavy metals. In barnacles, such inorganic granules usually contain calcium pyrophosphate. Incorporation of metals within such granules occurs mainly via the formation of metal pyrophosphate salts. In order to assess the chemistry of some reactions occurring during granule formation, the synthesis of calcium pyrophosphate, doped with zinc(II) ions with different [Zn]:[Ca] molar ratios, has been investigated at pH 7 and 25 °C. The thermal stability of the products was studied at different temperatures. Considerable variations occur in the structure of calcium pyrophosphate when zinc ions are present in solution in small concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Phillips, D. J. H., “Quantitative aquatic biological indicators”, Applied Science Publishers, London, 1980.Google Scholar
2. Fialkowski, W., Newman, W. A., Mar. Pollut. Bull. 36, 138 (1998).Google Scholar
3. Simkiss, K., Taylor, M. G., J. Exp. Biol. 190, 131 (1994).Google Scholar
4. Simkiss, K., Taylor, M. G., Mar. Environ. Res. 28, 211 (1989).Google Scholar
5. Taylor, M. G., Greaves, G. N., Simkiss, K., Eur. J. Biochem. 192, 783 (1990).Google Scholar
6. Walker, G., Rainbow, P. S., Foster, P., Holland, D. L., Mar. Biol. 33, 161 (1975).Google Scholar
7. Simkiss, K., Taylor, M. G., J. Exp. Biol. 190, 131 (1994).Google Scholar
8. McCarty, D. J., Kohn, N. N., Faires, J. S., Ann. Intern. Med. 56, 711 (1962).Google Scholar
9. Cheng, P. T., Pritzker, K. P. H., Adams, M. E., Nyburg, S. C., Omar, S. A., J. Rheumatol. 7, 609 (1980).Google Scholar
10. Mandel, G. S., Renne, K. M., Kolbach, A. M., Kaplan, W. D., Miller, J. D., Mandel, N. S., J. Cryst. Growth 87, 453 (1988).Google Scholar
11. Cheng, P. T., Pritzker, K. P. H., Kandel, R. A., A. Reid. A. Scanning Electron Microsc. 1, 369 (1983).Google Scholar
12. Abbott, G. A., J. Amer. Chem. Soc. 31, 763 (1909).Google Scholar
13. Monk, C. B., J. Chem. Soc., 423 (1949).Google Scholar
14. Prabhakar, S., Rao, K. J., Rao, C. N. R., Chem. Phys. Lett. 139, 96 (1987).Google Scholar
15. Dusold, S., Kummerlen, J., Sebald, A., J. Phys. Chem. A 101, 5895 (1997).Google Scholar
16. Watanabe, M., Onoda, S., Furuta, S., Gypsum Lime 63, 225 (1990).Google Scholar
17. Brand, T. Von, Nylen, M. U., Martin, G. N., Churchwell, F. K., J. Parasitol. 53, 683 (1967).Google Scholar
18. Wolhoff, J. A., Overbeek, J. T. G., Rec. Trav. Chim. 78, 759 (1959).Google Scholar