Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:30:59.331Z Has data issue: false hasContentIssue false

Influence of TiO2 on Second Harmonic Generation in Disperse Red -1 doped Organic-Inorganic Hybrid Thin Films

Published online by Cambridge University Press:  01 February 2011

Congji Zha
Affiliation:
[email protected], The Australian National University, Laser Physics Centre, ACTON, ACT 0200, Canberra, 0200, Australia, 0061-2-61258659, 0061-2-61250029
Xinshi Luo
Affiliation:
[email protected], CSIRO, Molecular & Health Technologies, Clayton,, Melbourne, VIC, 3169, Australia
Anna Samoc
Affiliation:
[email protected], The Australian National University, Laser Physics Centre, ACTON, ACT0200, Canberra, 0200, Australia
Andrei Rode
Affiliation:
[email protected], The Australian National University, Laser Physics Centre, ACTON, ACT0200, Canberra, 0200, Australia
Barry Luther-Davies
Affiliation:
[email protected], The Australian National University, Laser Physics Centre, ACTON, ACT0200, Canberra, 0200, Australia
Get access

Abstract

Disperse Red 1 (DR1) doped TiO2-SiO2 inorganic-organic hybrid polymers were prepared by an anhydrous sol-gel process and second harmonic generation (SHG) of the fundamental 1053nm in these polymeric thin films was measured using Maker-fringe method. The nonlinear optical activity of DR1 in the thin films was studied by corona poling at different temperature (from room temperature to 140°C), and the stability of SHG after switching off corona power was evaluated by analyzing the SHG decay dynamics. Experimental results showed that the stability of the SHG of DR1 significantly increases with the cross-linkage degree of the TiO2SiO2 hybrid polymer network, and that the second harmonic coefficient d33 increases as the DR1 concentration increases. TiO2-doping can promote the polymerization of unsaturated C=C double bonds in the hybrid thin films during in-situ hot poling, enhancing the cross-linkage of the network of the hybrid material, and resulting in a great improvement of the stability of SHG. The excellent stability of second harmonic generation in the hybrid polymer thin films suggests that TiO2-doped inorganic-organic hybrid polymer is promising for chromophore doping for nonlinear optical applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Franken, P. A., Hill, A. E., Peters, C. W., and Weinreich, G., Phys. Rev. Lett. 7, 118 (1961).Google Scholar
2. Eich, M., Bjorklund, G. C., and Yoon, D. Y., Polymer Adv. Technol. 1, 189 (1990)Google Scholar
3. Ye, C., Minami, N., Marks, T. J., Yang, J., and Wong, G. K., Macromolecules, 21, 2899 (1988).Google Scholar
4. Zhang, H., Lu, D., and Fallahi, M., Appl. Phys. Lett. 84, 1064 (2004).Google Scholar
5. Goudket, H., Canva, M., lévy, Y., Chaput, F., and Boilot, J. P., J. Appl. Phys. 90, 6044 (2001).Google Scholar
6. Xu, L., Hou, Z. J., Liu, L. Y., Xu, Z. L., Wang, W. C., Li, F. M., and Ye, M. X., Optics Lett. 24, 1364 (1999)Google Scholar
7. Luo, X., Zha, C. and Luther-Davies, B., Journal of Non-Crystalline Solids, 351, 29 (2005).Google Scholar
8. Jerphagnon, J. and Kurtz, S.K., J. Appl. Phys. 41, 16671681 (1970)Google Scholar
9. Maker, P. D., Terhune, R. W., Nisenoff, M., and Savage, C. M., Phys. Rev. Lett. 8, 21 (1962)Google Scholar
10. Burland, D. M., Miller, R. D., and Walsh, C. A., Chem. Rev. 94, 3175 (1994)Google Scholar
11. Samoc, A., Samoc, M., Woodruff, M., and Luther-Davies, B., Photonic Polymer Systems: Fundamentals, Methods and Applications, edited by Wise, D. L., Wnek, G. E., Trantolo, D. J., Cooper, T. M., and Gresser, J. D., 49, pp.373436, Marcel Dekker, Inc, New York, Basel, Hong Kong, 1998.Google Scholar
12. Williams, G. and Watts, D. C., Trans Faraday Soc. 66, 80 (1970)Google Scholar
13. Stähelin, M., Walsh, C. A., Burland, D. M., Miller, R. D., Twieg, R. J., and Volksen, W., J. Appl. Phys. 73, 84718479 (1993)Google Scholar
14. Chung, S. and Stevens, J., Am. J. Phys. 59, 1024 (1991)Google Scholar
15. Sutherland, R. L., Handbook of Nonlinear Optics, New York, Marcel Dekker, Inc, p. 207233, 1996 Google Scholar
16. Dalton, L. R., Pure Appl. Chem. 76, 14211433 (2004)Google Scholar