Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T16:25:22.144Z Has data issue: false hasContentIssue false

Influence of the Time-Temperatur-Profile on Powder Characteristics of Nanocrystalline Anatase (TiO2) produced by Chemical Vapor Synthesis

Published online by Cambridge University Press:  01 February 2011

Ruzica Djenadic
Affiliation:
[email protected], Nanoparticle Process Technology, Faculty of Engineering and Cenide, University of Duisburg-Essen, Duisburg, 47057, Germany
Sankhanilay Roy Chowdhury
Affiliation:
[email protected], University of Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and Cenide, Duisburg, 47057, Germany
Marina Spasova
Affiliation:
[email protected], University of Duisburg-Essen, Experimental Physics, Faculty of Physics and CeNIDE, Duisburg, 47057, Germany
Andreas Gondorf
Affiliation:
[email protected], Experimental Physics, Faculty of Physics and CeNIDE, University of Duisburg-Essen, Duisburg, 47057, Germany
Erdal Akyildiz
Affiliation:
[email protected], Nanoparticle Process Technology, Faculty of Engineering and Cenide, University of Duisburg-Essen, Duisburg, 47057, Germany
Markus Winterer
Affiliation:
[email protected], University of Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and Cenide, Duisburg, 47057, Germany
Get access

Abstract

Chemical Vapor Synthesis (CVS) is the conversion of molecular species into nanocrystalline particles by chemical reactions in a gas flow reactor. Pure anatase nanoparticles are generated in a hot wall reactor from titanium isopropoxide using different time-temperature-profiles. The time-temperature-profile (T(t)-profile) in the gas phase of the reactor has a profound influence on the particle characteristics such as particle microstructure and surface chemistry and, therefore, on the quality of the powder consisting of nanocrystalline particles. In this study a simple reaction-coagulation-sintering model (CVSSIN) was used to predict influence of the T(t)-profile on the powder characteristics. The as-synthesized anatase powders show a very high degree of crystallinity, primary particle of about 10 nm sizes and a low degree of agglomeration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, X., and Mao, S. S, J. Nanosci. Nanotechn. 6, 906 (2006).Google Scholar
2. Li, G., Li, L., Boerio-Goates, J., and Woodfield, B., J. Am. Chem. Soc. 127, (2005) 8659.Google Scholar
3. Kruis, F. E, Kusters, K. A, Pratsinis, S. E, and Scarlett, B., Aerosol. Sci. Techn. 19, 514 (1993).Google Scholar
4. Winterer, M., “Nanocrystalline Ceramics – Synthesis and Structure”, (Springer Heidelberg, 2002).Google Scholar
5. Lutterotti, L., and Scardi, P., J. Appl. Cryst. 23, 246 (1990).Google Scholar
6. Howard, C. J, Sabine, T. M, and Dickson, F., Acta Cryst. B47, 462 (1991).Google Scholar
7. Kammler, H. K, Mädler, L., and Pratsinis, S. E, Chem. Eng. Techn. 24, 6 (2001).Google Scholar
8. Arabi-Katbi, O. I., Pratsinis, S. E, and Morrison, P. W Jr, and Megaridis, C. M, Combust. Flame 124, 560 (2001).Google Scholar
9. Zhang, H., and Banfield, J., J. Mater. Chem. 8 (9), 2073 (1998).Google Scholar
10. Nakaso, K., Okuyama, K., Shimada, M., and Pratsinis, S. E, Chem. Eng. Sci. 58, 3327 (2003).Google Scholar
11. Jensen, H., Soloviev, A., Li, Z., and Sogaard, E. G, Appl. Surf. Sci. 246, 239 (2005).Google Scholar
12. Lopez, T., Moreno, J. A, Gomez, R., Bokhimi, X., Wang, J.A., Yee-Madeira, H., Pecchi, G., and Reyes, P., J. Mater. Chem. 12, 714 (2002).Google Scholar
13. Bezrodna, T., Puchkovska, G., Shymanovska, V., Baran, J., and Ratajczak, H., J. Molec. Struc. 700, 175 (2004).Google Scholar
14. Kwon, Y. J, Kim, K. H, and Shim, K. B, J. Ceram. Process. Res. 3 (3), 146 (2002).Google Scholar
15. Grass, R. N, Tsantilis, S., and Pratsinis, S. E, AIChE Journal 52, 1318 (2006).Google Scholar
16. Vittadini, A., Selloni, A., Rotzinger, F. P and Grätzel, M., Phys. Rev. Lett. 81, 2954 (1998).Google Scholar
17. Tsantilis, S., and Pratsinis, S. E, Langmuir, 20, 5933 (2004).Google Scholar