Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T12:19:10.748Z Has data issue: false hasContentIssue false

Influence of the Structural Properties of Microcrystalline Silicon on the Performance of High Mobility Thin-Film Transistors

Published online by Cambridge University Press:  01 February 2011

Kah Yoong Chan
Affiliation:
[email protected], Research Center Juelich, IEF5-Photovoltaics, Juelich, Juelich, 52425, Germany
Dietmar Knipp
Affiliation:
[email protected], Jacobs University Bremen, School of Engineering and Science, Bremen, 28759, Germany
Reinhard Carius
Affiliation:
[email protected], Research Center Juelich, IEF5-Photovoltaics, Juelich, 52425, Germany
Helmut Stiebig
Affiliation:
[email protected], Research Center Juelich, IEF5-Photovoltaics, Juelich, 52425, Germany
Get access

Abstract

The influence of the crystalline volume fraction of hydrogenated microcrystalline silicon (mc-Si:H) on the performance of thin-film transistors (TFTs) processed at temperatures below 180 °C was investigated. TFTs employing mc-Si:H channel material prepared near the transition to amorphous growth exhibit the highest electron charge carrier mobilities exceeding 50 cm2/Vs. The influence of the crystalline volume fraction of the intrinsic mc-Si:H material on the transistor parameters like the charge carrier mobility and the contact resistance will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsukada, T. Technology and Applications of Amorphous Silicon, Springer Series in Material Science, 37, edited by Street, R. A. (Springer-Verlag, Berlin, Germany, 2000).Google Scholar
2. Stannowski, B. Schropp, R. E. I., Wehrspohn, R. B. and Powell, M. J., J. Non-Cryst. Solids 299-302, 1340 (2002).Google Scholar
3. Woo, J. I., Lim, H. J., and Jang, J. Appl. Phys. Lett. 65, 1644 (1994).Google Scholar
4. Vetterl, O. Finger, F. Carius, R. Hapke, P. Houben, L. Kluth, O. Lambertz, A. Mück, A., Rech, B. and Wagner, H. Sol. Energy Mater. Sol. Cells 62, 97 (2000).Google Scholar
5. Finger, F. Hapke, P. Luysberg, M. Carius, R. Wagner, H. Scheib, M. Appl. Phys. Lett. 65, 2588 (1994).Google Scholar
6. Cheng, I.C. and Wagner, S. Appl. Phys. Lett. 80, 440 (2002).Google Scholar
7. Lee, C.H., Sazonov, A. and Nathan, A. Appl. Phys. Lett. 86, 222106 (2005).Google Scholar
8. Kandoussi, K. Gaillard, A. Simon, C. Coulon, N. Pier, T. and Mohammed-Brahim, T., J. Non-Cryst. Solids 352, 1728 (2006).Google Scholar
9. Chan, K.Y., Bunte, E. Stiebig, H. and Knipp, D. Appl. Phys. Lett. 89, 203509 (2006).Google Scholar
10. Rech, B. Roschek, T. Repmann, T. Müller, J., Schmitz, R. and Appenzeller, W. Thin Solid Films 427, 157 (2003).Google Scholar
11. Shirai, H. Arai, T. and Nakamura, T. Appl. Surf. Sci. 113&114, 111 (1997).Google Scholar
12. Cheng, I.C., Allen, S. and Wagner, S. J. Non-Cryst. Solids 338-340, 720 (2004).Google Scholar
13. Chan, K.Y., Bunte, E. Stiebig, H. and Knipp, D. J. Appl. Phys. 101, 074503 (2007).Google Scholar
14. Bronger, T. and Carius, R. Thin Solid Films 515, 7486 (2007).Google Scholar
15. Shimakawa, K. J. Non-Cryst. Solids 266-269, 223 (2000).Google Scholar
16. Tzolov, M. Finger, F. Carius, R. and Hapke, P. J. Appl. Phys. 81, 7376 (1997).Google Scholar
17. Collins, R. W. and Yang, B. Y., J. Vac. Sci. Technol. B 7, 1155 (1989).Google Scholar
18. Greve, D. W., Thin-Film Transistors, Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems, 1st Ed. (Prentice Hall, New Jersey, 1998), Chap. 7, p. 286.Google Scholar
19. Schroder, D. K., Semiconductor Material and Device Characterization, 2nd Ed. (John Wiley & Sons, Inc., New York, Chichester, Weinheim, Brisbane, Singapore, 1998), Chap. 3, p. 152.Google Scholar