Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:30:56.039Z Has data issue: false hasContentIssue false

Influence of the Ge Dose in Ion-implanted SiO2 Layers on the Related Nanocrystal-memory Properties

Published online by Cambridge University Press:  01 February 2011

Sébastien Duguay
Affiliation:
[email protected], CNRS/ULP, Iness, 23, rue du Loess, BP 20 CR, STRASBOURG, france, 67037, France, 0033388106420, 0033388106548
Jean-Jacques Grob
Affiliation:
[email protected], CNRS/ULP, InESS, 23 rue du Loess, Strasbourg, france, 67037, France
Abdelilah Slaoui
Affiliation:
[email protected], CNRS/ULP, InESS, 23 rue du Loess, Strasbourg, france, 67037, France
Philippe Kern
Affiliation:
[email protected], CNRS/ULP, InESS, 23 rue du Loess, Strasbourg, france, 67037, France
Get access

Abstract

Thin silicon dioxide (SiO2) on Si layers with embedded germanium nanocrystals (Ge-ncs) were fabricated using 74Ge+-implantation at 15 keV and subsequent annealing. Transmission electron microscopy and Rutherford backscattering spectrometry have been used to study the Ge redistribution in the SiO2 films as a function of implantation dose under specific annealing conditions. At low implantation doses, Germanium is found to segregate at the Si/SiO2 interface leading to poor electrical properties. At higher doses and when the disorder limit of one displacement per atom is reached at the interface, transmission electron microscopy revealed the formation of a Ge-nc layer array located close to the Si/SiO2 interface and an another one inside the SiO2 host material. This near-interface high density (>1012 ncs/cm2) nc-layer is found to act as a floating gate embedded within the silicon dioxide. Capacitance-voltage measurements performed on metal-oxide-semiconductor structures containing such implanted SiO2 layers show significant memory properties (few volts hysteresis) at low programming voltages (<|10V|) due to the presence of Ge-ncs near the Si/SiO2 interface

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tiwari, S., Rana, F., Hanafi, H., Harstein, A., Crabbé, E. F. and Chan, K., Appl. Phys. Lett., 68, 1377 (1996).Google Scholar
2. Takahashi, N., Ishikuro, H., Hiramoto, T., Appl. Phys. Lett. 76, 209 (2000).Google Scholar
3. Heng, C.L., Teo, L.W., Ho, V., Tay, M.S., Lei, Y., Choi, W.K., and Chim, W.K., Microelect. Eng. 66, 218 (2003).Google Scholar
4. Normand, K. Beltios, Kapetanakis, E., Tsoukalas, D., Travlos, T., Stoemenos, J., Berg, J. V. D., Zhang, S., Vieu, C., Launois, H., et al., Nucl. Instr. Meth. B 178, 74 (2001).Google Scholar
5. Kanoun, M., Souifi, A., Baron, T., and Mazen, F., Appl. Phys. Lett. 84, 5079 (2004).Google Scholar
6. Borany, J.V., Heinig, K.H., Grötzschel, R., Klimenkov, M., Strobel, M., Stegemann, K.H., and Thees, H.J., Microelect. Eng. 48, 231 (1999).Google Scholar
7. Borodin, V.A., Heinig, K.H., Schmidt, B, Nucl. Instrum. Methods Phys. Res. B 147, 286 (1999).Google Scholar