Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:50:13.010Z Has data issue: false hasContentIssue false

Influence of the Deposition Rate of the a-Si:H Channel on the Field-Effect Mobility of TFTs Deposited in a VHF Glow Discharge

Published online by Cambridge University Press:  15 February 2011

H. Meiling
Affiliation:
TEL America, Inc., 123 Brimbal Avenue, Beverly, MA 01915, USA.
J. F. M. Westendorp
Affiliation:
TEL America, Inc., 123 Brimbal Avenue, Beverly, MA 01915, USA.
J. Hautala
Affiliation:
TEL America, Inc., 123 Brimbal Avenue, Beverly, MA 01915, USA.
Z. M. Saleh
Affiliation:
TEL America, Inc., 123 Brimbal Avenue, Beverly, MA 01915, USA.
C. T. Malone
Affiliation:
TEL America, Inc., 123 Brimbal Avenue, Beverly, MA 01915, USA.
Get access

Abstract

Inverted-staggered hydrogenated amorphous-silicon thin-film transistors (a-Si:H TFTs) were deposited in a glow discharge with an excitation frequency of 60 MHz. At 13.56 MHz it has been reported that the field-effect mobility of this type of TFT decreases with increasing deposition rate of the a-Si:H layer, due to an increase in the defect density in the channel. A successful way of increasing the deposition rate without deteriorating the material properties has turned out to be utilizing a higher excitation frequency than the conventional 13.56 MHz.

The deposition rate of the 60-MHz-deposited transistor channel was changed from 350 to 1300 Å/min by diluting the process gas silane with hydrogen and by changing the rf power. The dependence of the a-Si:H material properties on deposition parameters is described. The deposition rate dependence of the mobility in the 60-MHz deposited thin films and devices is presented and discussed in terms of hydrogen dilution in the plasma and the hydrogen content of the a-Si:H films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ibaraki, N., Matsumura, K., Fukuda, K., Hirata, N., Kawamura, S., and Kashiro, T., in 1994 Display Manufacturing Technology Conference (Society for Information Display, Playa del Rey, CA, 1994), pp. 121122; Y. Watabe, in 1994 Display Manufacturing Technology Conference (Society for Information Display, Playa del Rey, CA, 1994)., pp. 61–62.Google Scholar
2. Cabarrocas, P. Roca i, J. Non-Cryst. Solids 164–166, 37 (1993).Google Scholar
3. Jang, J., Jung, M.Y., Yoo, S.S., Song, H.K., and Jun, J.M., in Amorphous Silicon Technology 1992, edited by Thompson, M.J., Hamakawa, Y., LeComber, P.G., Madan, A., and Schiff, E. (Mater. Res. Soc. Proc. 258, Pittsburgh, PA, 1992) pp. 973978.Google Scholar
4. Uchida, H., Takechi, K., Nishida, S., and Kaneko, S., Jpn. J. Appl. Phys. 30 (12B), 36913694 (1991).Google Scholar
5. Taketchi, K., Uchida, H., and Kaneko, S., in Amorphous Silicon Technology-1992, edited by Thompson, M.J., Hamakawa, Y., LeComber, P.G., Madan, A., and Schiff, E. (Mater. Res. Soc. roc. 258, Pittsburgh, PA, 1992) pp. 955960.Google Scholar
6. Curtins, H., Wyrsch, N., Favre, M., and Shah, A.V., Plasma Chem. Plasma Process. 7 (3), 267 (1987).Google Scholar
7. Westendorp, J.F.M., Meiling, H., Pollock, J.D., Berrian, D.W., Laflamme, A.H. Jr., Hautala, J., and Vanderpot, J., in these proceedings (1994).Google Scholar
8. Finger, F., Kroll, U., Voret, V., Shah, A., Beyer, W., Fang, X.M., Weber, J., Howling, A. and Hollenstein, C., J. Appl. Phys. 71 (11), (1992).Google Scholar
9. Heintze, M., Zedlitz, R. and Bauer, Y.H., in Amorphous Silicon Technology 1993, edited by Schiff, E.A., Thompson, M.J., Madan, A., Tanaka, K. LeComber, P.G. (Mater. Res. Soc. Proc. 297, Pittsburgh, PA, 1993) pp. 4954.Google Scholar