Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T11:43:15.162Z Has data issue: false hasContentIssue false

Influence of the Cu Content on Structural and Vibrational Properties in Polycrystalline CuGaSe2 Thin Films

Published online by Cambridge University Press:  31 January 2011

Wolfram Witte
Affiliation:
[email protected], Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Stuttgart, Germany
Robert Kniese
Affiliation:
[email protected], Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Stuttgart, Germany
Michael Powalla
Affiliation:
[email protected], Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Stuttgart, Germany
Get access

Abstract

We studied CuGaSe2 (CGS) thin films with different Cu contents by means of X-ray diffraction (XRD) and micro-Raman spectroscopy. The CGS absorbers were deposited by co-evaporation on Mo/glass substrates. We found a clear shift of the CGS Raman mode frequencies to lower values with increasing Cu/Ga ratio. This is in direct correlation with the increasing lattice constants a and c extracted from XRD patterns. Influence of stress on the obtained results can be neglected, because very small stress values below 50 MPa were determined with the sin2Ψ method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Young, D.L. Keane, J. Duda, A. AbuShama, J. Perkins, C.L. Romero, M. Noufi, R. Prog. Photovolt. Res. Appl. 11 (2003) 535.Google Scholar
[2] G. Marín, Tauleigne, S. Wasim, S.M. Guevara, R. Delgado, J.M. Rincón, C., Mora, A.E. Pérez, G. Sánchez, Mat. Res. Bull. 33 (1998) 1057.Google Scholar
[3] Lehmann, S. Bär, M., Marrón, D. Fuertes, Pistor, P. Wiesner, S. Rusu, M. Kötschau, I., Lauermann, I. Grimm, A. Sokoll, S. Fischer, C.H. Schedel-Niedrig, T., Lux-Steiner, M.C., Jung, C. Thin Solid Films 511-512 (2006) 623.Google Scholar
[4] Joint Committee on Powder Diffraction Standards # 06-0680.Google Scholar
[5] Chakrabarti, R. Maity, A.B. Maiti, B. Dutta, J. Chaudhuri, S. Pal, A.K. Vacuum 47 (1996) 1371.Google Scholar
[6] Barghout, K. Chaudhuri, J. J. Mat. Sci. 39 (2004) 5817.Google Scholar
[7] Chung, D.H. Buessem, W.R. J. Appl. Phys. 38 (1967) 2535.Google Scholar
[8] Pawley, G.S. J. Appl. Cryst. 14 (1981) 357.Google Scholar
[9] Kötschau, I., Schock, H.W. J. Phys. Chem. Solids 64 (2003) 1559.Google Scholar
[10] Bodnar, I.V. Golubev, L.V. Plotnichenko, V.G. Smolyaninova, E.A. Phys. Stat. Sol. (b) 105 (1981) K111.Google Scholar
[11] Rincón, C., Ramírez, F.J., J. Appl. Phys. 72 (1992) 4321.Google Scholar
[12] Xue, C. Papadimitriou, D. Raptis, Y.S. Esser, N. Richter, W. Siebentritt, S. Lux-Steiner, M.C., J. Appl. Phys. 94 (2003) 4341.Google Scholar
[13] Ramírez, F.J., Rincón, C., Solid State Commun. 84 (1992) 551.Google Scholar
[14] Ishii, M. Shibata, K. Nozaki, H. J. Solid State Chem. 105 (1993) 504.Google Scholar
[15] Rincón, C., Wasim, S.M. Marín, G., Delgado, J.M. Huntzinger, J.R. Zwick, A. Galibert, J. Appl. Phys. Lett. 73 (1998) 441.Google Scholar
[16] Xue, C. Papadimitriou, D. Esser, N. J. Phys. D: Appl. Phys. 37 (2004) 2267.Google Scholar
[17] Witte, W. Kniese, R. Powalla, M. Thin Solid Films 517 (2008) 867.Google Scholar
[18] Álvarez-García, J., Rudigier, E. Rega, N. Barcones, B. Scheer, R. Pérez-Rodríguez, A., Romano-Rodríguez, A., Morante, J.R. Thin Solid Films 431-432 (2003) 122.Google Scholar
[19] Wei, S.H. Zhang, S.B. Zunger, A. Phys. Rev. B 59 (1999) R2478.Google Scholar