Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T12:01:49.313Z Has data issue: false hasContentIssue false

The Influence of the Crystalline Structure on the Electrical Properties of BaTiO3/SrRuO, Heterostructures

Published online by Cambridge University Press:  15 February 2011

L.A. Wills
Affiliation:
Hewlett Packard Laboratories, 3500 Deer Creek Road, Palo Alto, CA 94304
Jun Amano
Affiliation:
Hewlett Packard Laboratories, 3500 Deer Creek Road, Palo Alto, CA 94304
Get access

Abstract

Epitaxial BaTiO3/SrRuO3 heterostructures were deposited on MgO and SrTiO3 substrates by 90° off-axis, rf-magnetron sputtering. A template layer growth was required to obtain epitaxy on MgO. The crystalline structure of the films was analyzed with x-ray diffraction. The leakage current and remanent polarization depended on the crystalline structure and processing parameters. The BaTiO3 thin films displayed remanent polarizations of 13 μC/cm2 and leakage current densities of 107 Amps/cm2 at 2 volts. The BaTiO3 thin films grown under optimal conditions displayed very little fatigue up to 5×108 cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shi, Z.Q., Jia, Q.X. and Anderson, W.A., J. of Electron. Mat. 20 (11), 939 (1991).Google Scholar
2. Yeh, M.H., Liu, Y.C., Liù, K.S., Lin, I.N., Lee, J.Y.M. and Cheng, H.F., J. Appl. Phys. 74 (3), 2143 (1993).Google Scholar
3. Peng, C.-J., Hu, H. and Krupanidhi, S.B., Appl. Phys. Lett 63 (6), 734 (1993).Google Scholar
4. Desu, S.B. and Yoo, I.K., Proceedings of the International Symposium on Integrated Ferroelectrics, 640 (1992).Google Scholar
5. See for example, Proceedings of the International Symposium on Integrated Ferroelectrics, Monterey, CA (March, 1994).Google Scholar
6. Cheung, J.T., Morgan, P.E.D., Lowndes, D.H., Zheng, X-Y and Breen, J., Appl. Phys. Lett. 62 (17), 2045.Google Scholar
7. Amano, J., Ko, H., Narbutovskih, M., Sheats, J. and Tibbs, K., J. of Appl. Phys. 74 (7), 4620 (1993).Google Scholar
8. Eom, C.B., Cava, R.J., Fleming, R.M., Phillips, J.M., van Dover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J.J. and Peck, W.F. Jr, Science 258, 1766 (1993).Google Scholar
9. Yang, M.H. and Flynn, C.P., Physical Rev. Lett. 62 (21), 2476 (1989).Google Scholar
10. Tarsa, E.J., De Graef, M., Clarke, D.R., Gossard, A.C. and Speck, J.S., J. Appl. Phys. 73 (7), 3276 (1993).Google Scholar
11. Nashimoto, K., Fork, D.K. and Geballe, T.H., 60 (10), 1199 (1992).Google Scholar