Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T15:37:12.867Z Has data issue: false hasContentIssue false

Influence of Temperature on the Corrosion of Uranium Dioxide Nuclear Fuel

Published online by Cambridge University Press:  19 October 2011

Michael E. Broczkowski
Affiliation:
[email protected], The University of Western Ontario, Chemistry, 1151 Richmond St., London, N6A 5B7, Canada, 519-661-2111 ex 86357, 519-661-3022
Jamie J. Noel
Affiliation:
[email protected], The University of Western Ontario, Chemistry, 1151 Richmond St., London, N6A 5B7, Canada
David W. Shoesmith
Affiliation:
[email protected], The University of Western Ontario, Chemistry, 1151 Richmond St., London, N6A 5B7, Canada
Get access

Abstract

The anodic dissolution of UO2 has been studied at 60°C and the results compared to previous observations at 22°C. The rate of oxidation / dissolution was determined electrochemically at constant potentials in the range -500 mV to 500 mV (vs. SCE). The composition of the electrochemically oxidized surface was determined by X-Ray Photoelectron Spectroscopy (XPS). The onset of oxidation (UO2 → UO2+x) occurred at approximately the same potential (-400 mV) at both temperatures. However, the conversion of UV to UVI, and hence to soluble UO22+, was accelerated by temperature. This acceleration of dissolution caused the development of acidity at localized sites on the fuel surface at lower (less oxidizing) potentials (≥ 100 mV) at 60°C than at 22°C (≥ 350 mV).

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Santos, B.G., Nesbitt, H.W., Noel, J.J., and Shoesmith, D.W., Electrochim. Acta 49 1863 (2004).Google Scholar
2. Shoesmith, D.W., J. Nucl. Mater. 282 1 (2001).Google Scholar
3. Rudnicki, J.D., Russo, R., and Shoesmith, D.W., J. Electroanal. Chem, 372 3 (1994).Google Scholar
4. de Pablo, J., Casas, I., Gimenez, J., Marti, V., Torrero, M.E., J. Nucl. Mater. 232 138 (1996).Google Scholar
5. Shoesmith, D.W., Sunder, S., and Hocking, W.H.. In Electrochemistry of Novel Materials, edited by Lipkowski, J. and Ross, P.N., Vol. 29, Chapter 6, VCH, New York (1996).Google Scholar
6. Sunder, S., Shoesmith, D.W., Bailey, M.G., Stanchell, F.W., McIntyre, N.S., J. Electroanal. Chem. 130 163 (1981).Google Scholar
7. Casas, I., Gimenez, J., Marti, V., Torrero, M.E., Pablo, J. de, Radiochim. Acta 66–67 23 (1994).Google Scholar
8. Guilbert, S., Guittet, M.J., Barré, N., Gautier-Soyer, M., Trocellier, P., Gosset, D., Andriambololona, Z., J. Nucl. Mater. 282 75 (2000).Google Scholar
9. Cobos, J., Havela, L., Rondinella, V.V., Pablo, J. de, Gouder, T., Glatz, J.P., Carbol, P., Matzke, H., Radiochim. Acta 90 597 (2002).Google Scholar
10. Shoesmith, D.W., Sunder, S., Bailey, M.G., Wallace, G.J., Corrosion Sci. 29 1115 (1989).Google Scholar
11. Pablo, J. de, Gimenez, J., Torrero, M.E., Casas, I., Mater. Res. Soc. Symp. Proc. 353 609 (1995).Google Scholar
12. Santos, B.G., Noel, J.J. and Shoesmith, D.W., J.Nucl. Mater. 350 320 (2006).Google Scholar
13. Goldik, J.S., Nesbitt, H.W., Noel, J.J. and Shoesmith, D.W., Electrochim. Acta 49 1699 (2004).Google Scholar
14. Santos, B.G., Noel, J.J. and Shoesmith, D.W., Corrosion Sci. 48 3852 (2006).Google Scholar
15. Santos, B.G., Noel, J.J. and Shoesmith, D.W., Electrochim. Acta, 51 4157 (2006).Google Scholar
16. King, F. and Kolar, M., Ontario Power Generation report No. 06819-REP-01200-10005-R00 (1999).Google Scholar
17. Lucuta, P.G., Verrall, R.A., Matzke, H. and Palmer, B.J., J. Nucl. Mater. 178 48 (1991).Google Scholar
18. Gerwing, A.F., Doern, F.E., and Hocking, W.H., Surf. Interface Anal. 14 559 (1989).Google Scholar
19. Broczkowski, M.E., Noël, J.J., and Shoesmith, D.W., J. Nucl. Mater. 346 16 (2005).Google Scholar
20. Santos, B.G., Noel, J.J. and Shoesmith, D.W., J.Electroanal.Chem. 586 1 (2006).Google Scholar