Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:44:15.144Z Has data issue: false hasContentIssue false

Influence of Surface Defects on the Characteristics of GaN Schottky Diodes

Published online by Cambridge University Press:  10 February 2011

F. Scholz
Affiliation:
4.Physikalisches Institut, Universität Stuttgart, D-70550 STUTTGART, Germany
V. Harle
Affiliation:
4.Physikalisches Institut, Universität Stuttgart, D-70550 STUTTGART, Germany
O. Briot
Affiliation:
GES, Université Montpellier II, 34095 MONTPELLIER, France
B. Gil
Affiliation:
GES, Université Montpellier II, 34095 MONTPELLIER, France
R. L. Aulombard
Affiliation:
GES, Université Montpellier II, 34095 MONTPELLIER, France
Get access

Abstract

We have studied the fabrication of Pt/Au Schottky diodes on n-type GaN. We show that the electrical characteristics of the diodes are strongly dependent on the surface chemical treatment before the metal deposition. Lowest leakage currents were obtained by the use of a HC1 solution. We also show that annealing the diode at a moderate temperature (400°C) leads to reduced reverse currents. In order to explain these results, we measured the density of deep levels in the Schottky diode depletion region before and after the annealing process. We did not observe any significant difference in the bulk density of defects due to the anneal. We also studied the temperature dependence of the reverse currents and found a low activation energy. Our results are interpreted in terms of electrical defects at the metal-GaN surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S.-I., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. 34, 1332 (1995).Google Scholar
2 Nakamura, S., Senoh, M., Nagahama, S. I., Iwasa, N., and Yamada, T., Jpn. J. Appl. Phys. 35, 74 (1996).Google Scholar
3 Asif Khan, M., Chen, Q., Yang, J. W., Shur, M. S., Dermott, B. T., and Higgins, J. A., Elect. Dev. Lett. 17, 325 (1996).Google Scholar
4 Wu, Y.-F., Keller, B. P., Keller, S., Kapolnek, D., Denbaars, S. P., and Mishra, U. K., IEEE Elec. Dev. Lett. 17, 455 (1996).Google Scholar
5 Briot, O., Alexis, J. P., Tchounkeu, M., and Aulombard, R. L., Proc. Mat. Sc. Eng. to be published (1996).Google Scholar
6 Scholz, F., Haerle, V., Bolay, H., Steuber, F., Kaufmann, B., Reyher, G., Drnen, A., Gfroerer, O., Im, S.-J., and Hangleiter, A., Solid State Electronics accepted for publication, in print, (1996).Google Scholar
7 Liu, Q. Z., Lau, S. S., Perkins, N. R., and Kuech, T. F., Appl. Phys. Lett. 69, 1722 (1996).Google Scholar
8 Suzue, K., Mohammad, S. N., Fan, Z. F., Kim, W., Aktas, O., Botchkarev, A. E., and Morkoc, H., J. Appl. Phys. 80, 4467 (1996).Google Scholar
9 Hirsch, M., Duxstad, K. J., and Haller, E. E.. Evolution ofTi Schottky barrier heights on n-type GaN with annealing (These proceedings).Google Scholar
10 Prabhakaran, K., Andersson, T. G., and Nozawa, K., Appl. Phys. Lett. 69, 3212 (1996).Google Scholar
11 Wang, L., Nathan, M. I., Lim, T. H., Khan, M. A., and Chen, Q., Appl. Phys. Lett. 68, 1267 (1996).Google Scholar
12 Schmitz, A. C., Ping, A. T., Asif Khan, M., Chen, Q., Yang, J. W., and Adesida, I., Semicond. Sci. Technol. 11, 1464 (1996).Google Scholar